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S INGIfAL 

5, Nucleotides 
A. Simple Nucleotides 
B. Nucleoside Polyphosphates 
c. Oligonucleotides 

6. Nucleic Acids 

V I .  References 

I .  INTRODUCTION 

The recent commercial development of high pressure l i qu id  
chromatographic instruments, and the  a v a i l a b i l i t y  of small and uni- 

formly s ized r e s in  beads has enhanced the ro l e  of column chroma- 
tography f o r  t he  rapid assay of nucleic acid components. 

advancement i n  the  pu r i f i ca t ion  and analysis has been due t o  the  
recent demonstration t h a t  t h e  ion exclusion is more OT equally e f -  
fect ive than the  ion exchange as a separation pr inciple  f o r  t he  
resolution of purine and pyrimidine bases,  nucleosides, deoxynucle- 

osides and n u ~ l e o t i d e s l - ~ .  
pl icat ions of separation pr inciples  t h a t  have been employed f o r  t h e  

separation of nucleic  acid consti tuents.  The reader i s  referred t o  
two review a r t i c l e s  of Cohn f o r  t he  e a r l i e r  works on t h i s  sub- 
ject4’  s. Separations by chromatography and electrophoresis on 
paper and th in  layers are not described here;  several  monographs 
and review a r t i c l e s  are  avai lable  i n  t h e  l i t e r a tu re6 - l2 .  
reader i s  a l so  referred t o  a recent methodological study for t h e  
base analysis of ribopolynucleotides by chemical tritium label ing 
which u t i l i z e s  two dimensional chromatography on t h i n  layers of 
cel lulose as a separation means 

A major 

This a r t i c l e  deals with the recent ap- 

The 

13,14 

The separation of nucleic  acid const i tuents  on columns of 

polystyrene resins ,  which bea r  e i t h e r  cat ionic  ( s u l f i t e )  o r  anionic 
(quaternary mine )  functional groups, i s  based upon two main oppos- 
ing pr inciples:  ion exchange and ion exclusion. (a) t he  anion ex- 
change occurs between an anion and a resin with anionic functional 
groups. 
and a r e s in  with ca t ion ic  functional groups. 

Similarly,  t he  cation exchange occurs between a cation 

(b) t h e  ion exclusion 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

is  a manifestation of Donnan e f f e c t .  I t  separa tes  ion ized  from non- 
ionized substances by excluding the  charged species due t o  repul -  

s ion  as opposed t o  a t t r a c t i o n  i n  the  ion-exchange. However, ion 
exclusion u t i l i z e s  the  same r e s i n  matrix as  does ion-exchange but  
at desorbing, as opposed t o  absorbing conditions.  Repulsion of 
ions r a t h e r  than a t t r a c t i o n  i s  de l ibe ra t e ly  sought. Thus, one 
uses "cation exchanger" f o r  anion-exclusion chromatography 

and an "anion exchanger" f o r  cation-exclusion chromatography , 

1,3,15 
2 

Though ion exclusion and ion exchange are two opposing p r i n c i -  
p l e s ,  both may occur a t  t he  same time i n  t h e  separa t ion  of a mix- 

t u r e  of nuc le ic  ac id  cons t i tuents .  Besides these  two i o n i c  p r i n c i -  
p l e s ,  nonionic in t e rac t ions  are a l so  important. Hydrophobic i n t e r -  
ac t ions  and p a r t i t i o n  chromatography play an important and inde- 
pendent r o l e  i n  determining the  d i s t r ibu t ion  coe f f i c i en t  o f  organic 
compounds on polystyrene matrices.  
a re  re ta rded  on polystyrene exchangers more than a re  equally 
charged pyrimidine compounds; t h i s  has been r a t iona l i zed  by not ing  
the  more "organic" nature of the  purines (compared t o  pyrimidines 
of s imi l a r  s t ruc tu re )  and the  benzenoid na tu re  of the  polystyrene 
matrix.  
solvent ( the  matrix) e x i s t s ,  it should be  poss ib le  t o  demonstrate 

a " sa l t i ng  out" e f f e c t .  
s tud ie s ;  t h e  h igher  t he  i o n i c  s t r eng th ,  the  h igher  t h e  d i s t r i b u t i o n  
coe f f i c i en t  of a nonionized molecule undergoing p a r t i t i o n  chromato- 
graphy, hence the  l a t e r  it appears i n  t h e  e lu t ion  sequence. This 

accounts f o r  the  r e l a t i v e  pos i t i ons  of like-charged pur ines  and py- 
rimidines and f o r  t h e  e f f e c t  of i o n i c  s t rength  on the  absolute 
pos i t ion  of  uncharged purines and thus underscores t h e  important 
r o l e  of p a r t i t i o n  chromatography i n  ion exclusion chromatography . 

The nonionic in t e rac t ions  a re  genera l ly  manipulated by adding 

an organic solvent t o  the  eluant.  They are  a l s o  influenced by t h e  
amount of s a l t  i n  t he  e luan t .  On the  o the r  hand, t he  i o n i c  i n t e r -  
ac t ions  a re  mainly e f f ec t ed  by t h e  i o n i c  s t a t e  of  t he  so lu t e .  
Hence, the  extent of i o n i c  in t e rac t ions  between r e s in  matrix and 
the  so lu tes  i s  cont ro l led  by t h e  pH of t he  environment. 

For example, pur ine  compounds 

If an a t t r a c t i o n  of an organic molecule t o  an organic 

Such has been observed i n  ion-exclusion 

2 
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S I N G W  

Kelmers e t  a l ,  l6 developed lkeversed-phase" chromatography as 
a means of achieving separa t ions  of individual t r a n s f e r  RNA species.  
These separa t ions  u t i l i z e  columns of small beads of an i n e r t  s o l i d  
material  coated with b a s i c  quaternary a l i p h a t i c  ammonium deriva- 

t i v e s  and involve both i o n i c  and hydrophobic in t e rac t ions  between 
the so lu tes  and t h e  coating mater ia l .  Although o r ig ina l ly  devel- 
oped f o r  separa t ions  at the  macromolecular l eve l  , reversed-phase 
chromatography has been successfu l ly  applied t o  separations of 
small molecules. 

Reversed-phase chromatography , involving hydrophobic organic 
substances immobilized on i n e r t  supports [such as aluminum oxide, 

kieselguhr,  polytrifluorochloroethylene (Kel F) , and polyfluoroethy- 
lene (Teflon)] e f f e c t s  a simple p a r t i t i o n  of so lu t e s  between an i m -  

mobilized organic phase and a mobile aqueous phase. 
opposite of p a r t i t i o n  chromatography on paper, i n  which t h e  organic 
phase i s  the  mobile one. 

veloped f o r  t h e  separa t ion  of t R N A s 1 6  ac tua l ly  involves both ion  

This i s  t h e  

The "reversed-phase" chromatography de- 

exchange and d i f f e r e n t i a l  s o l u b i l i t y ,  as pointed out i n  1965 by 
Kelmers et  a1.l' The r e s u l t s  from a recent work18 ind ica t e  tha t  t he  
smaller nuc le ic  acid components a re  resolved on these  columns i n  a 
manner e s s e n t i a l l y  i d e n t i c a l  t o  t h a t  observed i n  flanion-exchangetl 
chromatography on polystyrene materials. Hence the  only d i f fe rence  
between what has been ca l l ed  reverse-phase anion-exchange chromato- 
graphy and t h e  more conventional anion-exchange chromatography on 

polystyrene r e s i n s  l i e s  i n  the  d i f fe rence  between the  a lky l  and 
a ry l  substances holding the  ion-exchange groups, which a r e  quater- 
nary ammonium der iva t ives  i n  both cases,  The d i f f e r e n t i a t i o n  

sought by c a l l i n g  one lkeversed phase" and t h e  o ther  "anion ex- 
change" i s  thus misleading; both a re  both, and both a re  a mixture 

of ion exchange and p a r t i t i o n .  
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

11. THEORETICAL CONSIDERATIONS 

Data Presenta t ion  & Quant i ta t ive  Terms 

The most important f ea tu re s  of a chromato- 
graphic separa t ion  a re  peak pos i t i ons  and peak widths r e l a t i v e  t o  

volume o r  The r e s u l t s  a re  b e s t  expressed as  ba r s  o f  

length 2W and p l o t t e d  so t h a t  t h e  midpoints are a t  t h e  peak pos i -  

t i ons ,  V 

the peak, and Ex i s  m l  o r  min from appl ica t ion  of t h e  sample t o  t h e  

apex of t h e  peak.) Thus, each b a r  covers a d i s tance  ( i n  volume o r  

time) representa t ive  of +! and -W from t h e  peak pos i t i on .  Both W 
and 4 are  expressed i n  column bed volumes [ (c ross -sec t ion  of col-  

umn) X (column length)] o r  minutes, o r  both.  Lx i n  bed volumes i s  
numerically equal t o  the  volume d i s t r i b u t i o n  coe f f i c i en t  of a sub- 

s tance  under experimental conditions 

d i ca t e  a reso lu t ion  f a c t o r  (%) of 1.0 [Rw - (% - %)/(% + s)]. 
A value of 1.0 f o r  R 

proportions of 100 t o  1 o f  t he  two neighboring substances 

- 
- Peak Dimensions. 

- (W is  the  peak width at 50% of the  maximum height of 
-X' 

- 

1-3,19 

Separation o f  Peaks. Two neighboring ba r s  t h a t  j u s t  touch in -  

is adequate f o r  easy quan t i t a t ion  even i n  
19 -w . 

Efficiency of 5 Chromatographic System. The 'he ight -equiva l -  

ent of a t h e o r e t i c a l  p l a t e "  (HETP) o f f e r s  a quan t i t a t ive  measure 

and comparison of column e f f i c i ency  f o r  each component (peak) under 

each separa t ion  condition and each r e s in .  
determined from the  equation: 

kauf2OS2l),  where Ex is the  t o t a l  volume t o  t h e  peak ( l e s s  any vol- 

ume between t h e  end of t he  column and t h e  de tec tor )  from the  s t a r t  

o f  e lu t ion ,  and L is the  he ight  of t h e  r e s i n  bed i n  mi l l imeters .  

The HETP of each substance,  i n  mi l l imeters ,  i s  ind ica ted  under i t s  
2W b a r  on the  f igures .  

The usefulness of these  parameters i n  expressing t h e  r e s u l t s  

was demonstrated by Singhal and Cohn". The authors expla in  t h a t  

The p l a t e  he ight  i s  
2 HETP = 0.18 (!/Ex) 1: (see Gleuc- 
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S INGHAL 

many fac to r s  a f f ec t  t h e  e f f i cacy ,  which may be expressed quant i ta -  
t i v e l y  i n  terms of reso lu t ion  (RJ of two substances and t h e  p l a t e  

height (HETP) shown by a s i n g l e  substance. Both involve two exper- 
imentally determinable var iab les  , t h e  d i s t r ibu t ion  coef f ic ien t  (D) 

and t h e  dispersion or var ia t ion  (a). The former can be determined 
by e i t h e r  equ i l ib ra t ion  or column experiments and i s  subjec t  t o  a 
simple mass law approach based on a f f i n i t y  f o r  t h e  exchanger. The 

l a t t e r  is  determinable only by column experiments and is  a measure 
of t he  ove ra l l  e f f ic iency  of t he  experimental conditions , mechani- 
cal  as well as chemical. When a is  combined with the  d i s t r i b u t i o n  
coef f ic ien t  and t h e  length of t he  column t o  give p l a t e  he ight  
(HETP) , we have a quan t i t a t ive  measure of t he  e f f ic iency  o f  a given 
exchanger with respect t o  t h e  given substance under the  t o t a l  ex- 

perimental conditions employed, i . e .  , a quan t i t a t ive  measure of 
t he  q u a l i t a t i v e  and often misleading term, "sharpness ,'I of  a peak. 
In cont ras t  t o  reso lu t ion ,  it i s  a measure of the  behavior (number 

of exchanges) of a s i n g l e  substance. 

I1 I .  PRACTICAL CONSIDERATIONS 

1. Column Preparation Operation 

The exchangers a re  cleaned by washing with severa l  volumes of 
a l k a l i  (1M NaOH), ac id  (1M HC1 o r  HCOOH) , 50% ethanol,  50% acetone 
and water. The t r e a t e d  r e s in  is centrifuged a t  each s t e p  t o  avoid 
losses  i n  decantation. This treatment removes most u l t r a v i o l e t -  

absorbing f r e e  mater ia l  i n  most ion-exchange r e s ins .  
(cation exchanger) and ace ta te  (anion exchanger) forms are prepared 
by t r e a t i n g  the  r e s i n s  with 3M ammonium formate and 3M sodium 
ace ta t e  , respec t ive ly  . 

The amonium 

Reversed-phase colunm mater ia l  (commonly known as RPC-5) , con- 

s i s t i n g  of beads of polychlorotrifluoroethylene coated with a qua- 
te rnary  ammonium der iva t ive  [methyltrialkyl (Cs-Clo) ammonium chlo- 
r ide ]  , i s  prepared by thoroughly mixing 2.5 m l  o f  1% quaternary 

amine der iva t ive  i n  chloroform f o r  each gram of beads. The dry 
powder obtained, a f t e r  removing chloroform at 2OoC, is suspended 
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CHROMATOGRAPHIC ASSAY OF NLTCLEIC ACIDS 

i n  1 . O M  ace t a t e  o r  chloride,  as des i red ,  and s t i r r e d  a t  about 2OoC 

f o r  2 h t o  remove a i r  bubbles. 

i n t o  an extension tube f i t t e d  on top of a jacketed column [ the  bead 
support and column top a re  made o f  i d e n t i c a l  ad jus tab le  p i s tons  and 

porous (10-pm diameter pores) d i sc s ] .  Uniform packing of t he  beads 

is achieved by passing the suspension through a column a t  about 0 .5  

ml/min flow r a t e  f o r  about 2 hr .  

F ina l ly ,  the  suspension is  poured 

The bed height obtained i n  t h i s  

manner does not  shr ink  more than 2% 
18 umn . 

upon repeated use o f  t h e  co l -  

Constant temperature is  maintained by using a c i r cu la to ry  

water bath.  The production of undesirable a i r  bubbles, e spec ia l ly  

a t  high temperatures and with organic so lvents  i n  the  e luan t ,  i s  
e f f e c t i v e l y  prevented by passing t h e  e f f l u e n t  through a very narrow 

bore tubing (0 .3  nun i . d . )  and co l l ec t ing  it a t  a l eve l  two meters 

h igher  than the  spectrophotometer c e l l .  

2 .  Hydrolysis of Nucleic Acids 

The nuc le i c  ac id  ana lys i s  can be ca r r i ed  out a t  t h e  f r e e  base,  

the  nucleoside o r  t h e  nucleotide l e v e l .  The nucleoside l eve l  has 

emerged as a f avor i t e  because of i t s  freedom from isomeric p a i r s  

(as i n  a lka l ine  hydrolyzate of RNA) and from s t rong  chemicals (as 
i n  f ree ing  the  bases of pyrimidine nucleosides).  Nucleosides can 

be obtained by mild enzymic means from both FWA and DNA. 

(a) DNA. 

Deoxynucleosides. DNase I and venom phosphodiesterase, 

each 10 mg pe r  m l ,  and a lka l ine  phosphatase, 3 mg per  m l  a r e  pre- 

pared i n  0.2 M ammonium carbonate. 

1:1:2 proportions,  respec t ive ly .  To each s a l t - f r e e  A u n i t  o f  

DNA sample i n  10 u l  of 0.2 M ammonium carbonate, 5 p l  por t ion  of 
t h e  th ree  enzyme mixture containing 35 u n i t s  of DNase, 10 u n i t s  of 

venom d ie s t e ra se ,  and 0.25 un i t s  o f  a lka l ine  phosphatase, i s  added 

i n  a microtube. The hydrolysis i s  complete i n  about 90 minutes a t  

5OoC. 

The th ree  enzymes a re  mixed i n  

260 
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Bases. The RNA hydrolysis t o  bases is  generally incom- - 
p le t e  and unsatisfactory.  
under mild acid conditions (pH 1.6 a t  37OC f o r  25 h r  or pH 2.8 at 

100°C f o r  1 h r ) ,  however d r a s t i c  conditions are required t o  f r e e  
the pyrimidine bases,  
175OC f o r  2 h r ,  6 M hydrochloric acid24 a t  1 2 O o C  f o r  2 h r  or 12 M 
perchlor ic  acid2' at 100°C for 1 h r  have been employed f o r  a quan- 
t i t a t i v e  recovery of purine and pyrimidine bases from DNAs. Since 

the hydrolysis has t o  be carr ied out in  sealed tubes and some los s  
of bases due t o  high ac id i ty  occurs, the method is  cumbersome and 
thus DNA estimation at nucleoside level  is  preferred.  

The purine bases are removed from DNA 

Concentrated, 90-100% formic acid23 at 

(b) RNA. 
Nucleosides. The conditions f o r  enzymic hydrolysis of 

tRNA t o  nucleosides i n  an e a s i l y  v o l a t i l i z a b l e  bu f fe r  were inves t i -  
gated recent ly  . 
10 p1 of 0.2 M ammonium carbonate (pH 8.7) containing 1 mM magnes- 
ium ace t a t e  is mixed with 5 p1 of a mixture of three enzymes: 
c r e a t i c  RNase (37 u n i t s ) ,  venom phosphodiesterase (10 u n i t s ) ,  and 
alkal ine phosphatase (0.25 u n i t ) .  The l a s t  two enzymes should be 
free of a contaminant deaminase, which transforms adenosine i n t o  

inosine during the  hydrolysis.  Though tRNAs are hydrolyzed a t  a 
slower r a t e  i n i t i a l l y  when Mg i s  included i n  the  d iges t ,  a com- 
p l e t e  RNA hydrolysis is achieved i n  2 h r  under these conditions 
with or without Mg2+. 

ly, such as pseudouridine i n  3 h r .  
t i n e l y  carr ied out a t  50°C f o r  4 h r  or at 37OC f o r  15 h r .  

2 *-3* -nucleotides . 
(10-15 p l )  i s  hydrolyzed a t  37OC f o r  18 h r .  
moved by adding an equal quant i ty  of H C l O  4 
soluble KC104 i n  the cold. 

with cold 10 mM HC104 t o  recover any adsorbed nucleotides.  
deamination of cy t idy l i c  acids may occur during such alkal ine hy- 

18 drolysis  , 

22 Approximately 1 .0  A260 uni t  (50 pg) of t R N A  i n  

pan- 

2+ 

The modified nucleosides are  released slow- 
Hence, the hydrolysis i s  rou- 

One A260 un i t  of tRNA i n  0.3 M KOH 

Excess a l k a l i  i s  re- 
and sedimenting the i n -  

The c r y s t a l l i n e  p e l l e t  i s  washed twice 
Some 

3*-nucleotides.  One A260 uni t  of oligonucleotides i n  10 
~1 of 50 mM annnonium acetate ,  pH 4.5 is mixed with 3 p1 of three 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

enzymes (RNase T2,  2 u n i t s ;  RNase T1, 25 u n i t s ;  pancrea t ic  RNase, 

1.5 un i t s ) .  The hydrolysis i s  complete, as no oligonucleotides a r e  

de tec tab le  a t  37°C a f t e r  4 h r  (see the  note i n  r e f .  18, p. 14). 

S'-nucleotides.  One A260 u n i t  of oligonucleotides i n  10 

1-11 of 0.2 M ammonium carbonate and 1 mM magnesium ace ta t e  (pH 8.7) 
containing 10 un i t s  of  phosphodiesterase I ( f reed  of 5 ' -nuc leo t i -  

dase a c t i v i t y  

p l e t e  hydrolysis.  

26 
) is  incubated a t  50°C f o r  2-3 h r  t o  produce a com- 

Oligonucleotides. (a) RNase T1. F i f t y  A260 u n i t s  of 

tRNA,  dissolved i n  200 1-11 of  20 mM Tris -HC1,  pH 7.4 are incubated 

a t  5OoC f o r  15 min. 

a c t i v i t y ,  Calbiochem) containing 400 un i t s  i s  added, and t h e  mix- 
t u r e  i s  digested a t  37°C f o r  30 min. 

adding 300 p1 of 8 M urea.  

t o  convert cyc l i c  phosphates i n t o  3I-phosphates. 

Thereafter,  5 p1 of RNase T1 ( f r e e  of RNase T2 

The reac t ion  is stopped by 

The d iges t  is ac id i f i ed ,  when des i red ,  

(b) Pancreatic RNase. Ten A260 u n i t s  

of tRNA and 100 1-18 (300 un i t s )  o f  pancrea t ic  ribonuclease,  i n  30 p1 

of 20 mM Tr i s -ace ta te  with 2 mM EDTA, pH 7.4, a re  incubated a t  5OoC 

f o r  2 h r .  

mixture i s  made a c i d i c  (pH 3 t o  4) with 1 M HC1-and incubated a t  

20°C f o r  another 2 h r .  The d iges t  is mixed with an equal volume 

of 8 M u rea  and is  applied d i r e c t l y  t o  the  colthn. 

f e c t s  due t o  the  presence of enzyme i n  t h e  samples a r e  noted 

To convert cyc l i c  phosphates i n t o  3'-phosphates, t h e  

No adverse e f -  
18 . 

The addition of urea  immediately a f t e r  t h e  hydrolysis,  besides 

avoiding nonspecific-bond s p l i t t i n g ,  prevents aggregation of o l i -  

gonucleotides and thus  helps i n  the  t o t a l  recovery of la rge  oligo- 

nucleotides from t h e  column . 22 

Acid-soluble pool. Rat l i v e r  obtained a f t e r  decapi ta t ion  

is  d i r e c t l y  homogenized with a Potter-Elvehjem homogenizer i n  0.75 

M HC104 ( r e f .  27). 
ed by cent r i fuga t ion .  

umes of cold 10 mM HC104. 

bined, and the  mixture is d i r e c t l y  applied t o  the  reversed-phase 

column. 

A 5% l i v e r  homogenate i n  co ld  HC104 is  separa t -  
The p e l l e t  i s  washed twice with small vol- 

The washings and the  supernatant a r e  com- 
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S INGHAZ, 

3. Data Presentation 
Though the separations a re  best  i l l u s t r a t e d  by the elut ion pro- 

f i le ,  t he  method is  impractical  i n  presenting several experiments 
i n  a l imited space. 

resolution. 
t ion time are the two most important r e su l t s .  
t r a t e d  as bars of length 2W (W = width of a peak at ha l f  i t s  m a x i -  
mum height) placed s o  t h a t  t h e  midpoints are a t  the posi t ions of 

peaks (Ex). Thus , each ba r  w i l l  represent a distance i n  volume o r  
time of +! and -1 from the peak p ~ s i t i o n l - ~ .  

Two neighboring bars t h a t  j u s t  touch indicate  a resolut ion 
f ac to r  ($) of 1.00 [% = (s - %)/(% + WJ] , which is s u f f i c i e n t  
t o  allow quant i ta t ion even up t o  r a t i o s  of 1 O O : l  of the two neigh- 
boring ~ p e c i e s ' ~ .  
(HETP) can be calculated f o r  each peak (see sect ion 11). It  allows 
a quant i ta t ive comparison of column eff ic iency f o r  each substance 
under each separation condition. 

I t  a l so  lacks quant i ta t ion of sharpness and 
Peak posit ions and widths r e l a t i v e  t o  volume or elu- 

They can be i l l u s -  

The height equivalent of a theo re t i ca l  p l a t e  

IV.  INFLUENCE OF SEPARATION PARAMETERS 

1. @ 
The nucleic acid components are amphoteric i n  nature.  They 

contain amino groups t h a t  form cations a t  acid pH's , such as i n  cy- 
t i d i n e ,  adenosine and guanosine. The hydroxyls of ur idine and 
guanosine form anions at bas i c  pH's. The phosphate group of a 
nucleotide bears an anionic charge commencing a t  pH<l, and another 
anion commencing a t  pH 4 (see f ig .  1 i n  ref. 10). The hydroxyls of 
r ibose have a pK around 13. They are  used most e f f ec t ive ly  i n  t h e  
formation of a complex with borate,  which introduces an addi t ional  
anion and helps i n  the separation of 2 ' - ,  3'-nucleotides from 5 ' -  

nucleotides 2 8 J 2 9 .  

i c  or anionic charge depending upon the pH of the  medium, the  elu-  
ant. The eluant pH's 
when selected judiciously,  can separate these compounds by e i t h e r  
anion exclusion o r  cation exchange on the same column. 

The nucleic  acid consti tuents bear  a net  cation- 

Hence, t he  pH is  the  most important factor .  
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CHROMATOGRAPHIC ASSAY OF WCLEIC ACIDS 

PH 1 
-4.6 + *  

1 I I 

c 
-b 

A - G 
+ 

9g T - 

Figure 1 i l l u s t r a t e s  t he  e f f e c t  of pH on t h e  four most 
common nucleosides separated on a column of  cation-exchange 

1 re s in  . Adenosine and cy t id ine  (pK,, 3.5 and 4.1, respec t ive ly)  

become cations i n  t h e  region of  pH 4 ,  hence they appear last  i n  
cation-exchange ana lys i s  a t  t h i s  pH (Fig. 1, top row). Uziel 

-- e t  al.30 separated the  four nucleosides (and other) under these  
conditions, where ur id ine  and guanosine a re  resolved due t o  non- 

i o n i c  forces ,  bu t  found unsa t i s fac tory  reso lu t ion  of t h e  t h r e e  u r i -  

dines. However, these  ur id ines  and t h e  o ther  major nucleosides 

separa te  s a t i s f a c t o r i l y  on a similar cation-exchange column a t  

0.11 0.20 0.14 I 

0.12 :HETP: 0.18 I 
I I I I I I  

LCV 0.5 1,o 1.5 2 .o 
FIGURE 1 

anion-exclusionP and c a t i ~ n - e x c h a n g e ~ ~  (pH 4.6) chromatography of 
ribonucleosides. Column: Aminex A-6, 50 cm x 5 nun; l i qu id  column 
volume (LCV), 8 m l .  Eluants: 0 .4  M HCOONH4 a t  pH 4.65; 50 mM 
NH4OH adjusted with AcOH for pHs 8.5-9.8; and 10 mM NHQOH, pH 10.6. 
Flow ra te :  0.2 ml/min; 5OoC. [Reproduced from R. P. Singhal, Arch. 
Biochem. Biophys. 152, 800 (1972), by permission of t h e  Academic 
Press,  Inc.]  

Effect of H upon e lu t ion  volume and p l a t e  height (HETP) i n  
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a lka l ine  pH values (Fig. l ) ,  where no nucleoside has a pos i t i ve  

( a t t r ac t ive )  charge, and hence t h e  nucleosides are incapable of 
binding t o  t h e  neagtively charged res in .  
exchange materials and pH conditions , p a r t i a l l y  ionized components 
( in  t h i s  case, f i ve  ur id ines ,  inosine,  and guanosine) thus can be 
resolved i n  less than one l i qu id  column volume of eluant””. 

With t h e  proper choice of 

The f ive  ur id ines  (2-thiouridineD 4-thiouridine,  pseutouridine,  
uridine,  and ribothymidine) appear a t  pH 9.8 i n  t he  order of in-  
creasing pKa (8.1, 8.2, 8.9, 9.2, and 9.7, respec t ive ly) ,  which i s  
the  order of decreasing an ionic  charge at t h i s  pH. 
between e lu t ion  pos i t ion  and pK values of these  anions on t he  

cation exchanger c l ea r ly  ind ica tes  t ha t  they a re  var iab ly  repe l led  
or excluded from t h e  negatively charged matrix.  
e lu t ing  bu f fe r  determines t h e i r  ne t  anionic charge, hence t h e  ex- 
t e n t  of t h e i r  p a r t i a l  exclusion. The separation of  adenosine and 
cytidine on an anion exchanger a t  ac id  pH may be s i m i l a r l y  explain- 

9 ed . 

The r e l a t i o n  

a 

The pH of the  

. .  

Figure 2 i l l u s t r a t e s  t h e  e f f e c t  of pH on peak pos i t ions  (vol- 
umn d i s t r ibu t ion  coe f f i c i en t s  i n  bed volumes) and HETP of  the  com- 
mon 5’ - ribonucleoti  des resolved by anion- exclus i on chromatography 
on a column of  Aminex A-6 ( r e f .  3). The four  major nucleotides 

appear as one broad band at neu t r a l  pH or pH 5 .  

eluant i s  made ac id ic ,  t he  f ron t  band is resolved i n t o  two bands or 
i n t o  individual peaks. 
th ree  ur idyla te  analogs remain unchanged, bu t  guanylate i s  s l i g h t l y  
retarded, thus completely resolving the  major nucleotides.  
guanylate re ta rda t ion  can possibly be explained by the  loss of net 
negative charge, which i s  due t o  t h e  ion iza t ion  of t he  bas i c  amino 
group, and due t o  t h e  pu r in i c ,  hydrophobic nature (more a f f i n i t y  
f o r  t he  s t a t iona ry  organic phase of the  r e s i n  matrix than f o r  t h e  

aqueous eluant) of t h e  molecule. 

However, as t h e  

From pH 5 t o  2.5, t he  pos i t ions  of  t he  

The 

This dual re ta rda t ion  e f f e c t  i s  b e t t e r  demonstrated i n  the  
separation of  cy t idy la te  fromadenylate, where t h e  two a re  var iab ly  
retained on t h e  column, as t he  ca t ion iza t ion  (p%’s 4.5 and 3.8, 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

5 

4 

PH 

3. 

BEDVOLUMES 
033 004 006 008 LO lr4 

I I I I I I " ' 1  1 

-?Ic 

1 I I 1 1  1 I I I I I  

12 16 24 32 40 56 
MINUTES 

FIGURE 2 

Ef fec t  of pH upon e lu t ion  volume and p l a t e  height (HETP) i n  
anion-exclusion chromatography1 of 5' -ribonucleotides and ur id ines  . 
Column: Aminex A-6, 50 cm x 5 nun; bed volume, 9.8 m l .  Eluants:  5 
mM HCOOH at pH 2.5; 20 mM NH,COOH + HCOOH f o r  pH 3-5. Flow r a t e :  
0.25 mllmin; 50°C. 
chem. 43, 245 (1974), by permission of t h e  Fed. Eur. Biochem. SOC.] 

[Reproduced from R. P. Singhal, Eur. J. Bio- 

respectively) counteracts t h e  anionic charac te r  of t h e  primary 
phosphate group. 
t i d e s  a t  pH 4 . 5  and 5 ,  however, cannot be explained by d i f fe rences  
between pyrimidines aqd purines.  
b a s i s  of t he  Donnan e f f e c t  t h a t  t he  ac tua l  pH ins ide  t h e  ion-ex- 
change bed is somewhat d i f f e ren t  from t h a t  outside,  i n  t h e  so lu t ion ,  
due t o  t h e  loca l  environment (anions of the  resin matrix i n  d i lu t e -  
s a l t  so lu t ions)  and temperature of t h e  column. Therefore, t h e  
peak pos i t ions  of so lu tes  cannot p rec i se ly  be pred ic ted  on t b e  
bas i s  of t h e i r  ion iza t ion  constants.  Presumably the  ac tua l  pH i n  
the  column environment i s  appreciably lower than the  apparent pH 
3 . 5 ,  which causes a t o t a l  ca t ion iza t ion  of t h e  bas i c  group i n  cy- 
t i d y l a t e  and i n  adenylate. 
may behave as neu t ra l  molecules under these  conditions. 

The r e l a t i v e  pos i t ions  of t h e  last two nucleo- 

I t  can be ca lcu la ted  on t h e  

Hence, t he  cy t idy la t e  and adenylate 
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SINGHAL 

Figure 3 i l l u s t r a t e s  the influence of pH on the  anion-exchange 

chromatography of nucleosides. 
last i n  cation exchange (cations a t  pH 4.6, see f i g .  1) behave as 
neu t ra l  molecules; hence t h e i r  e lut ion posi t ions a r e  not influenced. 

However, uridine and guanosine develop an anionic charge i n  t h e  
region of pH 9. The two nucleosides are  sorbetl t o  the r e s in  more 
and more strongly as t h e i r  anionic character i s  enhanced progres- 
s ive ly  by r a i s ing  the  pH. 
more than cytidine and uridine,  respectively,  because the two pu- 
r ine nucleosides bear  enhanced hydrophobic in t e rac t ions ,  hence 

they a re  s t rongly sorbed t o  the organic r e s in  

The effects  of varying the r a t e  of pH change and the  ion ic  
concentration (pH and' salt  gradient)  on t h e  e lu t ion  posi t ion of 
2 ' ,  3'-nucleotides have been described . The r e l a t i v e  d i s t r ibu -  

Cytidine and adenosine t h a t  appear 

Adenosine and guanosine are  retarded 

19 . 

31 

0.2 0.4 0.7 1.0 2 4 7 to 20 

0.2 0.4 0.7 1.0 2 4 7 10 20 
0, (BED VOLUMES) 

FIGURE 3 

Effect of pH upon e lu t ion  volume (volume d i s t r ibu t ion  coeff i -  
c i en t ,  Dv), resolut ion f a c t o r  (b) and p l a t e  he i  h t s  (HETP) i n  
anion-exchange chromatography of r i b o n u c l e o ~ i d e s ~ ~ .  Column: Dowex 
1-X8, 50 cm x 2.5 nun; bed .volume, 2.45 m l .  Eluant: 0.2 M NH4OAc 
containing 5% 2-propanol; flow r a t e ,  5.1 cm/min; 50°C. 
from R. P. Singhal and W. E. Cohn, Anal. Biochem. 45, 585 (1972) , 
by permission of t he  Academic Press, Inc.] 

[Reproduced 
- 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

t i on  of t h e  nucleotides depends upon t h e  r a t i o  (R) o f  t h e  r a t e  of  

change t o  the  i o n i c  s t rength  [ R  = (GV)/S, where G i s  t h e  r a t e  of 
pH change i n  pH un i t s  p e r  l i t e r  of t h e  e luant ,  V i s  t h e  wet r e s i n  
volume and S is the  i o n i c  s t rength] .  
have been separated by t h i s  p r inc ip l e  

A large number of nucleotides 
31 . 

2 .  Ionic Strength 
(a) Ion Exchange. 

The i o n i c  s t rength  of  t he  e lu t ing  ion (examples: C1- and 
Na+ i n  anion- and cation-exchange chromatography, respec t ive ly)  in -  

fluences t h e  peak pos i t ions  of substances t h a t  t r u l y  undergo ion 
exchange. However, t h e  substances t h a t  appear near  t h e  f ron t  of 
t h e  chromatogram, hence excluded, a re  not  influenced by changes i n  
the  e l u t i n g  salt  [except when a low i o n i c  s t rength  causes a p a r t i a l  
exclusion of t he  excluded spec ies ;  see sec t ion  (b) below]. Figure 
4 i l l u s t r a t e s  such e f f e c t s .  As t he  anion exchanger i s  e lu t ed  with 

increasing molar i t ies  of t he  ace t a t e  ion, t he  re ten t ion  of two an- 
ions (ur id ine  and guanosine) i s  decreased, but those of uncharged 
species (adenosine and cy t id ine)  is constant.  The ana lys i s  time 
can be shortened by using the  h igher  mola r i t i e s ,  but it may r e s u l t  
i n  the  loss  of reso lu t ion  of some spec ies ,  f o r  example, u r id ines  i n  

Fig. 4(a).  

(b) Ion Exclusion. 

The concentration of t h e  e lu t ing  ion is not expected, a 
p r i o r i ,  t o  influence the  peak pos i t i ons ,  as t h e  uncharged substances 
obviously do not  exchange i n  ion-exclusion conditions.  Singhal , 
while studying the  e f f e c t  o f  i o n i c  s t rength  on nuc le i s ide  separa t ion  
by anion exclusion found tha t  higher i on ic  s t rength  decreases t h e  
re ten t ion  (increases the  exclusion) of t he  ionized spec ies ,  bu t  r e -  
s u l t s  i n  a constant o r  increased e lu t ion  volume f o r  t h e  nonionized 

1 '  species (see Fig 4 in  r e f .  1). This observation is explained on 
the  bas i s  of t h e  Donnan e f f e c t .  

1 

The higher t h e  salt  concentration, t he  higher t h e  pH ins ide  

the  cation-exchange beads, leading t o  a g rea t e r  degree of ion iza-  
t i o n  of t he  p a r t i a l l y  pene t ra t ing  so lu tes  and thus  t o  increased r e -  

353 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



S INGHAL 

~ 

Yirmtts 10 20 50 loo m300 
I I 1 I 1 1  1 1  I I I l l  1 1 

0, a5 1 0  4 10 20 

a  HI 
34 

I 35 93 m 18 0 61 
R, 18 

03 
HETP 08 145 052 40 56 OM 
R" 1 7  

HETP 08 

R, c 12  A 14 

14 052 4 0 4 5  0 56 
a2 

x A 2 2  A (b) ps 
- 

HETP 4 A 3 2  . 085 15  

1.1 1.6 2.6 
HETP 1.1 3. I 0.61 1.1 

0.15 R, A A 

HETP 2.2 3.1 0.61 1 .o 
I 1 . I . . . I . . l . . I  . L  

0, (BED VOLUMES) 0.5 1.0 2 4 1 1 0  20 
I I I I I I I I  

Minutes ! I0 io 50 100 140 

FIGURE 4 

Effect of i on ic  s t rength of eluant upon e l u t i m  volume (dis- 

Elu- 

t r i bu t ion  coeff ic ient ,  Dv), resolut ion f ac to r  (Rw) and p l a t e  height 
(HETP) i n  anion-exchange chromatography of r i b o n u ~ l e o s i d e s ~ ~ .  
Column: Dowex 1-X8, 24 a n  x 5 mm, bed volume, 4.7 m l ;  5OoC. 
ants: NH40Ac (5% 2-propanol) a t  concentrations shown, a t  (a) pH 
9.5, 1.3 cm/min, and (b) pH 9.0,  2.9 cm/min. [Reproduced from 
same paper as Figure 3.1 

pulsion and earlier e lu t ion .  
stances are  "salted out 1132J33 and r e l a t i v e l y  retarded by increased 
ion ic  s t rength.  
outff property t o  separate a mixture of 11 uncharged amines on a 
cation-exchange r e s in  by e lu t ing  t h e  column successively with 1.75, 
1.32, and 0.22 M K3P04. 
solutes (such as the  more s t rongly bound methylated nucleosides 
present i n  tRNA) can be resolved i n  ion-exclusion chromatography by 
e lu t ing  the  column with a decreasing salt  gradient,  the  opposite 
of t h a t  used i n  ion-exchange work. 

On t h e  other hand, uncharged sub- 

Sargent and R i e m a ~ ~ ~ ~  made use of t h i s  "salt ing- 

Thus, a complex mixture of nonionized 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

10- 

An example of the influence of i on ic  s t rength on anion exclu- 
s ion of nucleotides i s  i l l u s t r a t e d  i n  Figure 5.  
strength of the eluant is increased from 10 t o  100 mm, neu t r a l  
molecules (nucleosides) remain uneffected i n  t h i s  range. However, 
disregarding the s l i g h t  s h i f t  i n  posi t ions of excluded u r idy la t e  

and guanylate, t he  diminised retent ions of cyt idylate  and adenylate 
i s  perhaps due t o  the decreased p a r t i t i o n  e f f e c t ,  which is  perhaps 
caused by changes i n  t h e i r  conformational propert ies  i n  very d i l u t e  
sal t  solut ions.  

As t h e  ion ic  

The increased retent ion of the two nucleotides at lower ion ic  

strength is explained by increase i n  the  Donnan e f f e c t ,  which a l -  
t e r s  the pH of the  local environment, hence t h e  ionizat ion of t he  
nucleotides.  A s  the  salt  concentration i s  decreased, the d i f f e r -  

3 

** I c . c * -  
2',3'-U 2',3'-G 2'A 3h  2'C 3'C 

I I I 1 I I I I I  

BED VOLUMES 
013 084 0,6 088 la0 114 

I I I I I 1 ' 1 ' 1  

SAMPLE 
VOLSpI) 

5'U 5'G 5'-C 5'A 
.c * 100 - HETP - 0012 0114 

ICIC 
0821 0033 
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S INGHAL 

ence between the  environment of t he  r e s in  solut ion inside the  r e s in  
bead (more acidic) and that outside ( l e s s  acidic) tends t o  increase 
due t o  establishment of the Donnan equilibrium. Thus, when solutes  

en te r  i n t o  the  resin matrix from a low-salt solution (e.g. ,  10 d), 
they encounter an environment of lower pH than when they en te r  from 
a high-sal t  solut ion (e.g. ,  100 mM), 

the  nucleotide therefore diminishes or disappears as the lower pH 

inside the  beads causes enhanced cat ionizat ion of t h e  base moiety. 
Thus, i n  d i l u t e  solut ions the anionic repulsion which causes an 

ea r ly  e lut ion of nucleotides is l o s t ,  and nonionic forces l i k e  par- 
t i t i o n  e f f e c t  increase t h e i r  adsorption. 
tention i n  d i l u t e  s a l t  solutions.  

The ne t  negative charge on 

Both forces increase re- 

3. Temperature 
In  ion exchange, a l l  substances, as examined f o r  nucleo- 

s ides  19’30, e l u t e  ea r ly  on increasing temperature with p a r a l l e l  i n -  
creases i n  p l a t e  heights but with p a r a l l e l  decreases i n  resolut ions.  
The temperature e f f ec t  i s  not uniform i n  ion exclusion . 
t r a t e d  i n  Figure 6 ,  when temperature is  lowered, pseudouridine and 
uridine appear near t h e  front  i n  less  eluant volumes. As the  tem- 
perature is raised,  ribothymidine (except at 3OoC),  uanosine, cy- 
t i d ine ,  and adenosine move closer  t o  the f ron t ,  peak widths be- 
come smaller,  and the eff ic iency improves (small p l a t e s ) .  The d i s -  

placement of adenosine with temperature is greater  than t h a t  of any 
other nucleoside. 

1 As i l l u s -  

The p rac t i ca l  benefi ts  of shortened analysis time ( a  f ac to r  of 
more than 2.5 between 30 and 8OoC), lower p l a t e  heights ,  and lower 
column pressure (a f ac to r  of 2 between 30 and 8OoC) must be weighed 

against  the disadvantages of the loss  i n  resolut ion (the guanosine- 
cytidine-adenosine t r i p l e t  i n  Fig. B ) ,  as well as the s t a b i l i t y  of 
the compounds and the analyt ical  system ( p l a s t i c  f i t t i n g s ,  r e s i n ,  
eluant,  e t c . ) .  A temperature of about 50°C has been found satis- 
factory 1-3D15’18319’30, Recently, optimum resolutions of several  

modified nucleosides have been reported” by cation-exchange chro- 
r n a t ~ g r a p h y ~ ~  by using d i f f e ren t  combinations of i on ic  s t rength and 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

YIN 16 24 32 40 48 64 Bo 
I I I 1 8 1 ' 1  I I I I I  

I I I 1 , l I I  1 1 1 1  

LCV 0.5 0.75 1.0 1.25 1.5 2.0 2.5 

FIGURE 6 

Effec t  of temperature upon e lu t ion  volume and p l a t e  he ight  

1.25 cm/min. 

(HETP) i n  anion-exclusion chromatography of ribonucleosidesl  . 
Column: Aminex A-6, 50 cm x 5 mm; LCV, 8 m l .  Eluant: 50 mM 
NHkOH neut ra l ized  t o  pH 9.8 with AcOH; flow r a t e :  
[Reproduced from R. P. Singhal, Arch. Biochem. Biophys. 152, 800 
(1972) ,  by permission of t he  Academic Press,  Inc.]  

column temperatures ranging from 0 .1  M a t  4OoC t o  0.4 M ammonium 
formate a t  7 5 O c .  

4. Organic Solvent 
Highly hydrophobic species a re  not r ead i ly  desorbed by aqueous 

e luants .  For example, 2-methylthio-6-isopentyladenosine is  sorbed 
20 times s t ronger  than most common nucleosides i n  cation-exchange 

c h r ~ m a t o g r a p h y ~ ~ .  
remain p r a c t i c a l l y  undetectable.  Organic so lvents ,  when added t o  
the  aqueous e luant ,  r e s u l t  i n  increased s o l u b i l i t i e s  of  compounds 
espec ia l ly  containing one o r  more methyl groups. 
s o l u b i l i t y  i n  the  moving phase (eluant) causes a loss  i n  the  hydro- 

phobic in t e rac t ion  between the  s o l u t e  and t h e  benzoid r e s in  matrix. 
Consequently, these  substances appear e a r l y  when e lua ted  with or -  
ganic so lvents .  

Such substances appear as broad bands , hence 

The enhanced 
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S INGHAL 

The addition of various solvents  t o  the  elut ing bu f fe r  has 
been explored i n  ion-exchange c h r o m a t ~ g r a p h y ~ ~ .  
ethanol has a marked e f f ec t  on purines than on pyrimidines. 
nosine i s  influenced more than guanosine. 

19 same e f f ec t  as ethanol. O f  a l l  t he  other  solvents t e s t ed  , 1- 

butanol (7%) and 1-propanol (10%) were found sa t i s f ac to ry  f o r  
nucleoside separation by anion-exchange chromatography. 
ethanol has been reported36 t o  improve and hasten the resolut ion 
of minor, hydrophobic nucleosides i n  cation-exchange chromato- 

The addition of 
Ade- 

Isopropanol has the  

Similar ly  

30 
graphy * 

The influence of organic solvents on both anion and cation-ex- 
clusion chromatography has been s tud ied lD2 .  
influence on more l i poph i l i c  and nonionized compounds. Figure 7 
i l l u s t r a t e s  the addition of ethanol t o  the eluant  i n  anion exclu- 
sion of nucleosides. Ionically repelled compounds are influenced 

insignif icant ly .  However, t he  substances t h a t  a r e  re ta ined 

Ethanol has a marked 

MIN 16 24 32 40 48 56 
EtOH 
(%) 0.19 0.19 0.23 0.42 0.24 0.15 : HETP, 20 K 

I I 1 ‘ l ~ l ~ l  

\ 

- 5  - -  -s 

- 0  i i I h !L C “‘L A 
Y U  T G  

HETP,O% 012 0.14 0.15 017 0.11 0.19 

LCV 0,5 0.75 1.0 1.25 1.5 1.75 

FIGURE 7 

Effect of ethanol upon elut ion volume and p l a t e  height (HETP) 
i n  anion-exclusion chromatography of ribonucleosidesl. 
Aminex A-G, 50 an x 5 nun; LCV, 8 m l .  Eluant: 
pH 9 .8  plus ethanol as shown; flow r a t e ,  1.25 cm/min; 5OoC. 
[Reproduced from same paper as figure 6.1 

Column: 
20 mM (NH,,),CO3, 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

strongly due t o  p a r t i t i o n  and hydrophobic propert ies  are e f f ec t ed  

d i f f e ren t ly  [example: 
Such additives have s ign i f i can t  advantages i n  speeding up the ana- 
l y s i s  and sometimes i n  eliminating disadvantageous overlaps (such 

as 10% ethanol i n  Fig. 7 ) .  The decrease i n  eff ic iency with t h e  
addition of ethanol (compare p l a t e  heights at 0 and 20% ethanol) 
and increase i n  the operating pressure are  in s ign i f i can t  disadvan- 
tages.  

adenosine is  influenced more than cytidine) . 

The e f f ec t s  of solvents  on t h e  adsorption mechanisms of aro- 
matic compounds on ion-exchange r e s ins  have been reported i n  a 
se r i e s  of publications 37D40. The adsorption is  assigned t o  hydro- 

gen bond or .rr-bond interact ions between an aromatic compound and a 
counter ion of t he  anion exchanger. Thus, the  most important fac-  
t o r  i n  the  adsorption is the a b i l i t y  of t he  solvent t o  form a hydro- 

gen bond. The Van der Waals' forces have insignif icant  influence 
on d i s t r ibu t ion  coeff ic ient  values. 
solvents on elut ion posi t ions (K ' s )  of a number of aromatic com- d 
pounds , containing d i f f e ren t  functional groups, on several  ion ex- 
changers has been described by those workers 

The e f f ec t  of s ix  organic 

40 . 
5. Flow Rate -- 

The time required t o  complete an analysis  is regulated by con- 
t r o l l i n g  the  flow r a t e  of the eluant  Equilibrium operating con- 
d i t i ons  are gradually l o s t  and t h e  e lu t ion  curve i s  skewed (+W >-W) 

as flow r a t e  i s  increased . Signif icant  losses i n  resolut ion and 
chromatographic eff ic iency (plate  height) occur with only small 

changes i n  flow r a t e  (see Fig. 9 i n  Ref. 19; Table I i n  Refs 1-3; 
Fig. 6 in  Ref. 30). A compromise must be made between a reduction 
in  analysis time and a loss  i n  resolut ion,  especial ly  when two 
peaks are separable by only a resolut ion f a c t o r  approaching one. 

41 . 
19 

6 .  Resin P a r t i c l e  Size 

t i v e l y  as the f ixed ionic  concentration inside the r e s i n  is s u f f i -  
c ient ly  high. On the other hand, a r e s in  of low-cross-linkage 
causes enhanced sorptions of nonionic s ~ b s t a n c e s ~ ~ .  

- 
A r e s in  of high cross-linkage excludes ion ic  so lu t e s  effec-  

A rapid 

359 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



S INGHAL 

"equilibrium" (exclusion or exchange) i s  achieved by low cross- 

linked and small p a r t i c l e - s i z e  resins .  
The influence of res in  p a r t i c l e  s i z e  on cation-exclusion and 

Figure 8 2 on anion-exchange Chromatography was s tudied recent ly  . 
i l l u s t r a t e s  t he  e f f ec t  of r e s in  bead size and uniformity. The ex- 

changer of l a rge r  and heterogeneous p a r t i c l e  s i z e  (Dowex 1: 47 i10 

pm) resolves the  nucleosides less e f f ec t ive ly  than a s imi l a r  ion 
exchanger t h a t  has one-third the  p a r t i c l e  diameter and a narrow 
p a r t i c l e  s i z e  range (Aminex A-25: 
(HETP) for each component and the t o t a l  analysis times are  appreci- 
ably reduced with the small and homogenous r e s in  beads. 
small and uniform beads of ion exchanger improve resolut ions i n  
both ion-exclusion and ion-exchange chromatography. 

17.2 +2 pm). The p l a t e  heights  

Thus, 

BED VOLUMES 
0.4 0.6 0.8 1 2 3 5 7 5  

I ' 1 ' 1 ' 1  1 ' I I I 1 1 1 1  

CATION~EXCLUSION ( p H  3,751 

( 0 )  C Y  U T A  G 
Anlni A-25: + + '  + + 3. + 

0.09 0.13 0.17 0.25 0.3 0.24 .- HETP 

% HETP 1.4 j,o 2.8 
ANION EXCHANGE (pH 9.75) 

, A  G 
cw#:!-x8~ 3 ! 

C A  T + P U  G (b) 
MwA-25: + + ++ + 

0.22 0.5 + HETP-. 0.17 0.18 0.23 

Doll 141: %$ c HETP*$$$4 0.5 
1 1 I 1 . 1  I I I I I , [  1 1 1 1  

75 11 15 19 38 56 94 132 II 

' A  T g U  & 

MINUTES 
I 

FIGURE 8 

Effect of  res in  bead s i z e  and u n i f o r m i t y  upon separation and 
p l a t e  h e i  h t  (HETP) of ribonucleosides, and comparison of cation- 

A-25 (17.5 k2 pm) and Dowex 1-X8 (47 210 pm) i n  24 an x 5 mm. Elu- 
ants: (a) 20 mM HCOONHI, + 15 mM HCOOH, pH 3.75, a t  1.5 cmlmin; (b) 
0.3 M NH4OAc + 7% 1-butanol, pH 9.75, a t  1 .4  cm/min; 5OoC. [Repro- 
duced from R. P .  Singhal and W .  E. Cohn, Biochemistry 1 2 ,  1532 
(1973), by permission of the  American Chemical S o c i e t y T  

exclusion s and anion-exchange1 chromatography. Columns : Aminex 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

7. Sample Size 

A f a i r l y  la rge  volume of t h e  sample, when applied t o  a column 
a t  an ion ic  s t rength  lower than the  e luant ,  does not cause any ad- 
verse e f f e c t s  i n  ion-exchange chromatography. However, t he  volume 
of the  sample so lu t ions  i n  ion-exclusion chromatography is  theore t -  

i c a l l y  l imited by the  volume of  so lu t ion  adsorbed by the  r e s i n  and 
in  p rac t i ce  is  found t o  be considerably l e s s  than the  excluded 

volume . 42 

Two experiments with 10 mM ammonium formate as eluant (see 

Fig. 5 ) ,  where t h e  same amount of 5 '-nucleotide mixture i s  applied 
in  5 and 100 p l ,  respec t ive ly ,  show t h a t  while pos i t ions  of uridy- 
l a t e  and guanylate remain unchanged, cy t idy la t e  and adenylate a re  

appreciably retarded i n  anion exclusion. 
t o  influence t h e  p a r t i t i o n  of weakly ionized substances more than 
strongly charged species.  
cluded peaks change (increase) by increases i n  t h e  sample volume. 

m e  sample volume appears 

The p l a t e  he ights  of  only e a r l y  ex- 

V. SEPARATIONS 

The objec t ive  of t he  experiments described here i s  not t o  
recommend a s ingle ,  immutable procedure. The examples chosen a re  

those tha t  appear bes t  t o  i l l u s t r a t e  various p r inc ip l e s  and modifi- 
cation p o t e n t i a l i t i e s .  They a re  recent and perhaps meet most r e -  ! 

quirements of a modern biochemist. However, no s ing le  procedure 
is b e s t  f o r  a l l  purposes. P rac t i ca l  modifications can be int ,ro- 
duced i n  these  (and o ther )  procedures by jud ic ious ly  varying one 
o r  more separation f ac to r s  f o r  any given s i t u a t i o n .  

1. Bases. - 
(a) Cation-Exchange Resin 

( i )  Anion-exclusion Chromatography. Figure 9 ind ica t e s  
t he  separation' o f  both major purine, pyrimidine bases, and r a r e  
methylated spec ies  at pH 10. 
a t  e i t h e r  pH 9.5 o r  a t  pH 9.8, bu t  they a r e  a t  pH 10. 
component, 2-methyladenine, moves f a r t h e r  away from 5-methylcytosine 
as t he  eluant pH i s  r a i sed  from 9.5 t o  10. 

Adenine and cytosine are not  resolved 
The minor 

The e a r l y  e lu t ion  of 
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SINGHAG 

ELUTION TIME (mid 

1 .o 
a0 

Om6 
e 
P a4 
4 
I ca3 

I 
0 02 
8 
U ' a1 

I I I I 
988 14,7 19,6 24,5 

ELUTION VOLUME (ml) 

FIGURE 9 

Separation of purine and pyrimidine bases by anion-exclusion 
chromatography1. Column: Aminex A-6, 50 cm x 5 m. Elution: 20 
mM (NHI+)~CO~, pH 10.0; 0.25  ml/min; 5OoC. [R. P. Singhal, unpub- 
lished work. ] 

adenine compounds with an increase i n  pH i s  ascribed t o  an increase 
i n  the anionization of adenine (pKa, 9.8) i n  t h i s  pH range. 
s i x  common bases can be resolved s a t i s f a A o r i l y  (R > 1) i n  about 
60 min by elut ing at a f a s t  flow r a t e .  The elut ion posit ions of 
major nucleosides and deoxynucleosides i n  r e l a t ion  t o  bases have 
been described (see F i g .  8 i n  r e f .  1). [See a l so  anion-exclusion 
chromatography on molecular-sieve materials,  subsection 2 (a) .] 

43 

studied the separation of cytosine, adenine, guanine and u r a c i l  on 
an Aminex A-6 column. 
ta ining ionic  s t rength (0.4 M fonnate) and temperature (50°C) con- 
s t a n t ,  cytosine and adenine e l u t e  ear ly ,  but the other two species 
appear at the same posit ions.  
can be carr ied out a t  pH 5 . 2  i n  about 25 min a t  a moderate column 
pressure, 200 ps i .  

The 

W 

( i i )  Cation-exchange chromatography. Uziel e t  al .  -- 
When pH i s  raised from 4.75 t o  6.75, main- 

A routine analysis of the four bases 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

(b) Anion-Exchange Resin 
( i )  Cat ion- exclusion chromatography . Weak hydrochloric 

and recent ly ,  a d i l u t e  bu f fe r  so lu t ion  have been used t o  2 

separa te  t h e  major bases on an anion-exchange c o h m .  
illustrates such separations.  
cytosine a t  pH 3.75 (PI$,'" 4.1 and 4.5, respec t ive ly) ,  hence t h e  

former appears l a t e .  
the  purine base. 
present i n  t h e  sample (Fig. 10). Both u r a c i l  and adenosine can be 
resolved by se l ec t ing  an appropriate pH o r  by adding ethanol t o  

Figure 10 
Adenosine i s  ionized less than 

This i s  a l so  due t o  t h e  hydrophobic na ture  of 
The present method i s  adequate when u r a c i l  i s  not 

ELUTION TIME (rnin) 
10 20 30 
I Th I 1 

Ura 

I Ado 

I I I 

245 59 7,4 
ELUTION VOLUME (ml) 

FIGURE 10 

Separation of t h e  common purine and pyrimidine bases by ca t -  

Elution: 2 mM CH3COOH (+NHbOH), pH 3.75; 0 . 2 5  ml/min; 5OoC. 
ion-exclusion chromatography2. 
mn. 
[R. P.  Singhal, unpublished work.] 

Column: Aminex A-25, 10.8 cm x 6 . 3 5  
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S INGHAL 

t he  eluant.  
it causes deamination of cytosine at such high temperatures. 

The bu f fe r  pH should not be se l ec t ed  very ac id i c  s ince  

( i i )  Anion-exchange chromatography. A l l  bases of the  
nuc le ic  ac ids ,  except cytosine der iva t ives ,  a re  anionized at alka- 

l i n e  pH's. 
ence i n  t h e i r  anionic charac te r  is maximum. However, o the r  proper- 
t i e s ,  such as hydrophobic groups, should a l s o  be considered in  pre- 

d i c t ing  separations on the  bas i s  of the  ion iza t ion .  Figure 11 il- 

l u s t r a t e s  a separation of t he  common bases of t h e  nuc le ic  acids on 
a Dowex-1 x-8 column. Since t h e  peaks a re  well resolved (R > l ) ,  
a f a s t e r  flow r a t e  can be used t o  reduce t h e  time of  ana lys i s .  

Hence, a pH value can be determined where the  d i f f e r -  

w -  

2 .  Nucleosides and Minor Components 

(a) Cation-Exchange Materials 
(i) Anion-exclusion chromatography. A t  a lka l ine  pH's, 

uridines and guanosines behave as anions, and cy t id ine  and adeno- 

s i n e  as uncharged molecules [see sec t ion  IV(l)] .  On a cation ex- 
changer, t he  anions a re  resolved by anion exclusion by making use 
of t he  d i f fe rences  i n  t h e i r  ion iza t ions  a t  a given pH. 
charged species are resolved by nonionic p r inc ip l e s ,  such as p a r t i -  

The un- 

ELUTW VOLUME (mi) 

FIGURE 11 

Separation of t h e  common purine and pyrimidine bases by anion- 
exchange ch romat~graphy l~ .  Column: Dowex 1-X8, 25 cm x 5 mm. 
Elution: 0.3 M (NHL,)~CO~ plus 7% 1-butanol, pH 9.7,  5OoC; 0.2 
ml/min. [R. P. Singhal, unpublished work.] 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

t i on ,  hydrophobic na ture ,  s i z e ,  e t c .  The e lu t ion  pos i t i on  of  cer- 

t a i n  compounds may depend equally on both i o n i c  and nonionic pro- 

p e r t i e s  ( f o r  example, guanosine in  Fig. 1). The common nucleosides 

of tRNA’s can be separated at e i t h e r  pH 9.3 o r  9.8 i n  about 35 min 

by t h i s  pr inc ip le15 .  

A260 u n i t s  o f  glutamate t R N A  (E.  c o l i ) .  

ab le  reso lu t ions  under these  conditions in  about 13 m l  and 1 h r  

(Fig. 1 2 C ) .  

t i t a t i o n  of a lka l i -uns tab le  minor components, such as  7-methyl- 

Figure 1 2  i l l u s t r a t e s  an ana lys i s  of 0.52 

A l l  components show remark- - -  

The method should be used with cautdon where t h e  quan- 

0.6 .LCV: 1.2 1.8 2.4 3.0 3.6 4.2 

0.8 4 

0.3 LCV: 0.6 0.9 1.2 1.5 18 2.1 
1 I I I ’  

MIN 20 4 0  60 80 

FIGURE 12 

L I I I I , 

Comparison of c a t i ~ n - e x c h a n g e ~ ~  and anion-exclusion1 chroma- 
tography of ribonucleosides (panels a and c ,  respec t ive ly) .  Ana- 
l y s i s  of nucleosides from glutamate tRNA (quant i t ies  i n  nanomoles 
a re  ind ica ted  under each peak). Column: Aminex A-6, 50 cm x 5 mm. 
Eluants: 20 mM (NH4)2C03 a t  pH 9.8, 5OoC; 1 cm/min (panels b and 
c); 0 .4  M HC02NH4 a t  pH 4.65, 50°C. 
pos i t i ons  of po lyur idyla te  and 3H20 under these  conditions ; t h e  two 
indica te  t h e  excluded volume and t o t a l  l i q u i d  volume (LCV, 8 ml), 
respec t ive ly  f o r  t h i s  column. [R. P.  Singhal,  Arch. Biochem. Bio- 
phys. 152, 800 (1972), by permission of t he  Academic Press,  Inc.] 

Panel b shows the  e l u t i o n  
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SINGHAL 

guanosine i s  important. 
compounds can be assayed with confidence, 
t i o n  pos i t ions  of severa l  minor ribonucleosides deoxynucleosides 
and bases under separation conditions of  Fig. 1 2 .  Several minor 
nucleosides do not  separa te  s a t i s f a c t o r i l y  from the  o ther  nucleo- 

s i d e s  under these conditions . However, these  components can be 
separated by jud ic ious ly  se l ec t ing  t h e  separation parameters. 

However, the  degradation product of  such 
Figure 13 describes elu- 

1 

The e f f luen t  i n  t h i s  and o ther  ion-exclusion methods i s  prac- 
This property t i c a l l y  f r e e  of sa l t  and can be v o l a t i l i z e d  eas i ly .  

i s  important when i s o l a t i o n  and charac te r iza t ion  of minor compon- 
en t s  o r  a base composition of  t h e  base-labeled nuc le ic  acid i s  
sought. 
f i c a t i o n  of glutamate tRNA with cyanogen bromide. 

which transforms a minor component, 5-methylaminomethyl-2-thiouri- 
dine [S(MeNHMe) ZSrd] i n t o  a ur id ine  der iva t ive ,  was determined by 
following the  disappearance of the  minor component t h a t  separated 

This method was applied f o r  determining t h e  degree of modi- 
The reac t ion ,  

pH 9.8 

IJ 1 I , I * I .  I . 1 . l . l . L  

0.315 :LCV: 0.75 1.275 1.5 225 10 31 

FIGURE 13 

Elution pos i t ions  of the  common bases,  deoxynucleosides and of 
t he  major and some minor ribonucleosides i n  anion-exclusion chro- 
matographyl a t  pH 9 . 8  on a cation-exchange column. See legend t o  
Fig. 12(c) f o r  d e t a i l s .  [Reproduced from same paper as Fig. 12.1 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

22 as a d i s t i n c t  peak (Fig. 14). The anion exclusion was used 

recently i n  determining the  i n  vivo-modification of precursor mole- 
cules of t R N A s  (E. =), and thus,  a complete modification of pre- 
cursor tWAs w a s  not found t o  be a prerequis i te  f o r  i t s  matura- 
t i o n  44,45 

To answer t h e  question of whether o r  not the composition of a 

highly purif ied tRNA preparation agrees with the  primary s t ruc tu re  
of i t s  major component and i f  so ,  t o  what extent ,  Singhal and 
Best46 recent ly  examined f i v e  pu r i f i ed  tRNAs by ion-exclusion 
column chromatography of nucleosides and by thin- layer  separation 
of i n  v i t ro -  labeled nucleoside der ivat ives .  The authors concluded 
t h a t  ne i the r  of t he  two analyt ical  systems can be used alone t o  de- 

t e c t  and quan t i t a t e  every one of the nucleoside species present i n  
t R N A s .  However, t he  column methods have p rac t i ca l  advantages of 

speed, scale  and range of chromatographic conditions (pH, tempera- 
ture)  without loss  of v e r s a t i l i t y .  They describe posi t ions of 
several  modified nucleosides : 2-methyladenosine, 5-methylamino- 
methyl-2- thiouridine,  uridin-5-oxyacetate, photoproduct, pyrimidi- 
none (4-5) cyt idine,  and discuss disadvantages i n  t h e  analysis by 
3H-labeling and separation by bidimensional chromatography 13,14 . 

molecular- s i eve 

Separation of ribonucleosides , deoxynucleosides , and 

( i i  ) Anion-exclus ion chromatography 

materials.  
purine and pyrimidine bases have been reported on so-called molecu- 
lar-s ieve materials [polyacrylamide gels  (47-50) o r  Sephadex col- 

umns (51-63, 65)].  
exclusion, s ince the molecular sieve materials do have some ion- 
exchange propert ies  a r i s ing  from the  very weakly ionizable carbox- 
y l ,  hydroxyl, and amide groups. The separations have been per- 
formed a t  pH values t h a t  induce charges of the same sign on both 
matrix and solutes .  
from the f ac t  t h a t  many of the so lu t e s  employed were eluted i n  l e s s  
than one l iquid column volume, indicat ing exclusion from the  matrix.  

The strong retent ion of-nonionized species on these matrices is  

ce r t a in ly  due t o  nonionic forces s ince both kinds o f  gels  have a 

In f a c t ,  these separations are  a l so  due t o  ion 

Further support f o r  t h i s  i n t e rp re t a t ion  comes 
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S I N G W  

FIGURE 14 

Comparison of nucleosides derived from (a) untreated and (b) 
CNBr-treated glutamate tWA2 by anion-exclusion chromatography1. 
The quantities in nanomoles are indicated under each peak. 
[Reproduced from R .  P.  Singhal, Biochemistry 5, July 2 ,  1974 
issue, by permission of the American Chemical Society.]  
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

64 hydrophobic backbone s t ruc tu re .  The o r ig ina l  observation , KD 
values of aromatic and he terocycl ic  compounds on t h e  ge l  columns 
are g rea t e r  than one, is i n  p a r a l l e l  t o  t h i s  argument. Very re- 
cent ly ,  Prasada Rao and C h e r a ~ i l ~ ~  reported t h e  separation of t h i o  
nucleosides and t h e i r  der iva t ives  on both polyacrylamide (Bio-Gel 
P-2)  and Sephadex (G-10) columns by e lu t ing  with d i l u t e  s a l t  solu- 
t i ons  a t  about pH 10.5. Since t h e  an ionica l ly  charged thionucleo- 
s i d e s  were excluded i n  less than one l i q u i d  column volume and t h e  
thionucleosides containing strong hydrophobic groups were re ta rded  
s t rongly ,  t he  separa t ions  on these65 and on phosphocellulose 66 

columns are due t o  anion-exclusion chromatography. Group separa- 
t i ons  of bases,  nucleosides and nucleotides on gel columns, using 
t h i s  pr inc ip le ,  were reported recently67 (see sec t ion  below). 

( i i i )  Cation-exchange chromatography. Adenosine and cy- 
t i d i n e  a re  ca t ions  a t  an acid pH, hence they exchange with a cation 
exchanger. Though both ur id ine  and guanosine a re  uncharged and ex- 
cluded a t  about pH 4.6, guanosine appears a f t e r  ur id ine  compounds 
due t o  i t s  more organic na ture .  A separation of severa l  nucleo- 

s ides  by t h i s  p r inc ip l e  i s  i l l u s t r a t e d  i n  Fig. 15. 
dine group of nucleosides a re  poorly resolved because they lack 

charge d i f fe rences  and possess very l i t t l e  nonionic d i f fe rences  
[compare cation exchange (Fig. 12a) and anion exclusion (Fig. 12c) 
by using t h e  same column]. 
conditions of both anion exclusion and cation exchange range between 
0 .2  t o  0 .3  mm. However, t he  anion exclusion has t h e  advantage of 
speed, d i l u t e  v o l a t i l e  eluant and super ior  reso lu t ions  (ur id ines ,  
minor components). 

Here, t h e  u r i -  

The p l a t e  he ights  observed under the  

To enhance t h e  desorption of t h e  s t rongly  bound minor nucleo- 
s ides  and bases , t h ree  modifications have been introduced i n  t h i s  
cation-exchange method3': 
and temperature3', and addition of  ethanol t o  t h e  eluant36 [see 
sec t ions  IV(3) and (4)]. Figure 16 i l l u s t r a t e s  t he  e f f e c t  of i n -  

creasing t h e  pH, i o n i c  s t r eng th  and t h e  addition o f  ethanol (com- 

pare conditions of Figs. 1s and 16). 

increase  i n  the  i o n i c  strength35936, pH36 

While severa l  minor components 
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SINGEIAL 

0 2 3 
TIME (hr) 

4 5 6 7 8 
TIME (hr) 

FIGURE 15 

Elution pos i t i ons  of s eve ra l  bases and ribonucleosides in  
cation-exchange c h r ~ m a t o g r a p h y ~ ~ .  
Elution: 0.4 M HC02NH4, pH 4.65, 48"C, 0.26 ml/min, 24 p s i .  
o r ig ina l  f i gu re ,  modified f o r  c l a r i t y ,  is  reproduced from Uziel 
e t  a l .  g, 77 (1968) by permission of t he  authors and the  Academic 
Press, Inc . ]  

Column: Aminex A-6, 23 cm x 6 nun. 
[The 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

- b s s  
nuwsidc 

0.5- 

W 
V 

Ado 
3 -  U 

- T -  
Q I a 

0.1 - 

L 

0.051 
w 
V z 
m 
a m 

m a 
0.027 

- 
I 
I - 

0 1 2 
TIME (hr) 

FIGURE 16 

Elution pos i t ions  of  bases and ribonucleosides i n  a modified36 
c a t i o n - e ~ c h a n g e ~ ~  chromatography. 
nun. Elution: 0.85 M CH~COONHI,, pH 5.7 and 15% ethanol,  49"C, 0.25 
ml/min. 
hydrolyzate (broken curves) . [The o r ig ina l  f igure ,  modified f o r  
c l a r i t y ,  i s  reproduced from M. Uziel and C. Koh, J. Chromatogr. 59, 
188 (1971) by permission of t h e  authors and t h e  Elsevier  Publishing 

Column: Aminex A-6, 13 cm x 5 

N represents  an unknown component present i n  ty ros ine  tWA1 

C O . ]  

a r e  s a t i s f a c t o r i l y  resolved f o r  quant i ta t ion ,  a l l  common nucleosides 

and bases appear as a s i n g l e  band near t h e  f ront  (Fig. 16). 
(b) Anion-Exchange Resin 

( i )  Cation-exclusion chromatography. A t  ac id  pH va lues ,  
as discussed above, cy t id ine  and adenosine group of nucleosides 
a re  cations while u r id ine  and guanosine a re  uncharged species.  
an anion exchanger, t he  former two spec ies  a re  excludedlD2. 
degree of t h e i r  exclusion depends upon t h e i r  p\ values. This is 
a s i t u a t i o n  opposite t o  cation exchange where the  ca t ions  a re  ex- 
changed. 

On 
The 

But, nonionic species e l u t e  unadsorbed i n  both cases. 

371 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



S INGHAL 

Figure 17 i l l u s t r a t e s  an analysis of arginine tRNA (E. e) 
a t  a picomole leve l .  
ed a t  ac id  pHs, they appear between two excluded ca t ions ,  cy t id ine  

and adenosine. Their p a r t i c u l a r  pos i t ion  ind ica tes  l i t t l e  nonionic 
in t e rac t ions ,  bu t  they a re  enough t o  resolve the  th ree  ur id ine  
species.  Bet te r  reso lu t ions  of 7-methylguanosine, cy t id ine  and 
pseudouridine peaks were achieved recent ly  by subs t i t u t ing  Aminex 
A-28 (8 pm beads) f o r  Aminex A-25 (17 pm beads). The minor compon- 
en ts ,  such as 4-thiouridine and methylated species t h a t  appear l a t e  
i n  the  chromatogram, can be desorbed i n  l e s s  volume and time by i n -  

troducing a bu f fe r  of s l i g h t l y  high ion ic  s t r eng th  a f t e r  t h e  appear- 
ance of the  guanosine peak. 

In t h i s  procedure, 4-thiouridine i s  resolved from a l l  o ther  

Though ur id ines  a re  uncharged and not exclud- 

uridines.  And, the  use of an acid e luant  avoids any degradation of 
alkali-unstable compounds. Figure 18 i l l u s t r a t e s  t he  e lu t ion  pos i -  
t i ons  of t he  major and some minor ribonucleosides,  common deoxy- 

FIGURE 17 

Analysis of about 4 pg o f  nucleoside mixture o f  arginine tRNA 
Column: Aminex A-25, 10.8 cm by cation-exclusion chromatography2. 

x 6.35 mm. 
0.185 ml/min. 
peak. [Reproduced from R. P. Singhal and W. E.  Cohn, Biochemistry - 12, 1532 (1973), by permission of t he  American Chemical Society.] 

Elution: 20 mM HCOONH4 +15 mM HCOOH, pH 3.75, 50°C, 
The quan t i t i e s  i n  picomoles a r e  indicated under each 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

BED VOLUMES 
0.2 0.3 0.5 0.7 1 2 3 4 5 6 '  

I " ' I  ' I ' I '  I ' 1 ' 1 ' 1 ' 1 '  

m3C C Y U T A G %m2G '$ 
-; *+ * tI#+ Tt9- 

A&;!, I I $ i  
4 7 7 q  * Urn I ' '  Am* m2A:, m r n G  

d 
%m7G,'S*,i6A) m& m6A ms2i6A 

rn'A m:G 
DEOXYNUCLEOSI DES : 

dC dU dT dA dG +& + + 
Thy Ade Guo 

2.7 4.1 6.8 9.6 13.7 41 55 82 
MINUTES 

FIGURE 18 

Cation-exclusion chromatography2 of purine and pyrimidine 
bases , deoxynucleosides and ribonucleosides (top four  rows). See 
legend t o  Fig. 17 f o r  separa t ion  conditions.  [Reproduced from 
same paper as .Fig.  17.1 

nucleosides and bases.  Wenty one out of 24 nucleosides show some 

degree of separa t ion ,  which can be improved by chosing appropr ia te  

parameters. 

oligonucleotides.  Thus, Fig. 19 i l l u s t r a t e s  an ana lys i s  of t h e  de- 

canucleotide22. 

of  glutamate tRNA a f t e r  a modification with b i s u l f i t e  , which causes 

a cy t id ine  t o  u r id ine  t o  ur id ine  t r a n s i t i o n  

The method has  been used i n  t h e  cha rac t e r i za t ion  of 

The fragment was derived from the  anticodon loop 

22,68 
, 

( i i )  Anion-exchange chromatography. As mentioned e a r l i e r  

(see anion-exclusion) , ur id ine  and guanosine compounds a re  anion- 

ized  a t  a lka l ine  pH va lues ;  hence, they  can exchange on an anion- 

exchange column o r  can undergo anion exclusion on a cation-exchange 

column. The members of t h e  u r id ine  group (ribothymidine, pseudo- 

u r id ine ,  and ur id ine)  are resolved i n  these  two cases by v i r t u e  of 

t h e i r  s l i g h t l y  d i f f e r e n t  pKa values , a l l  of which l i e  i n  the  region 

of 9 .  Figure 20 i l l u s t r a t e s  separa t ions  of s eve ra l  nucleosides.  
The e a r l y  appearance of 6-isopentenyladenosine is of p a r t i c u l a r  
i n t e r e s t  (compare i t s  pos i t i on  i n  ca t ion  exchange, Fig.  16).  The 
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SINGHAL 

06 II 

- 260nm 

MOLES 
PER10 - 0 9  2 1  5.1 0 9  1 0  

RESIDUES 

FIGURE 19 

Analysis by cation-exclusion chromatography* of ribonucleosides 
of a decanucleotide (peak 3 i n  Fig. 30b) derived from b i s u l f i t e -  
modified glutamate tRNA2. Sample: enzymatic hydrolysate of  the 
decanucleotide, 0.36 A260 u n i t .  
nun. Elution: 1 mM NHbOAc, pH 3.8, at 5OoC and 0.2 m l / m h .  The 
quan t i t i e s  i n  nanomoles a re  ind ica ted  under each peak. 
from R. P. Singhal, Biochemistry 13, Ju ly  2,  1974 i ssue ,  by per- 
mission of t he  American Chemical Society,]  

Column: Aminex A=28,  18 cm x 6.3 

[Reproduced 

separation of minor components (Fig. 21, pH 9.7) can be improved by 
varying t h e  separation parameters. 
(Rw) of ur id ines  i s  i l l u s t r a t e d  i n  t h i s  case. The p l a t e  he ights  i n  
anion-exchange chromatography on Dowex 1 columns va r i e s  between 0.4 
t o  0.8 mm. However, t h i s  can be reduced t o  0.2 mm, thus making it 

compatible t o  o ther  ana ly t i ca l  systems by using anion exchangers of  
smaller and more uniform bead s i z e ,  such as Aminex A-25 o r  A-28 
(see Fig. 8) . 

The e f f e c t  o f  pH on separa t ion  

19 

3. Deoxynucleosides. 

The deoxynucleosides can be separated similar t o  ribonucleo- 
s ides  on both anion-and cation-exchange r e s ins  by e i t h e r  ion-ex- 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

ELUTION TIME (hr) 

ELUTION VOLUME (ml) 

FIGURE 20 

Anion-exchange chromatography1 of ribonucleosides. Column: 
Dowex 1-X8, 25 x 0.5 cm. Elution: 
pH 9.7, 50°C, 1 cm/min. 

0 .3  M NH40Ac + 7% 1-butanol, 
[R. P. Singhal, unpublished work.] 

change or ion-exclusion procedures. 
from ribonucleosides very l i t t l e  (pK values),  t h e i r  separations 
generally require minor modifications of t he  ribonucleoside separa- 

Since deoxynucleosides d i f f e r  

9.8 

97 
Rw- 1.0 1.2 4.7 
m'm'G" I 9.6 A 

FIGURE 21  

Anion-exchange chromatography1 o f  ribonucleosides . Separa- 
t ion at pH 9 .7  indicates  e lu t ion  posi t ions of several  minor com- 
ponents. 
[Reproduced from R. P. Singhal and W. E. Cohn, Anal. Biochem. 45, 
585 (1972), by permission of t he  Academic Press, Inc.] 

For column and elut ion conditions, see legend t o  Fig. 20. 
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S INGHAL 

t i on  conditions. 
anion-exclusion a t  pH 9.5 (Fig. 22), but t he  ribonucleosides re- 
quire  a s l i g h t l y  higher pH. The elut ion posi t ions of deoxynucleo- 
sides with respect t o  ribonucleosides and bases have been inves t i -  
ga t ed lS2  (see F i g .  13 f o r  anion exclusion and Fig. 18 f o r  cation 
exclusion). 

Thus the common deoxynucleosides are  resolved by 

4 .  Group Separation and Complex Formation. 

To invest igate  each species of nucleotides,  nucleosides, and 

bases, a p r i o r  f ract ionat ion of t he  sample i n t o  th ree  broad cate- 
gories i s  often helpful .  

groups on a polyacrylamide gel  column was unsat isfactory (mixed 

peaks). Recently ,. pH conditions and other  parameters were ex- 

plored6’ f o r  t h i s  anion-exclusion chromatography . 
separation of the th ree  groups i n  t he  presence of borate is shown 
i n  Fig. 23. 

An ear ly  attempt4’ t o  resolve these th ree  

1 A sa t i s f ac to ry  

ELUTION TIME (rnin) 
15 30 45 60 
I I I 

I I I 
8 12 16 

ELUTION VOLUME (rnl) 

FIGURE 22 

Anion-exclusion chromatography1 of deoxynucleosides . Column: 
Aminex A-6, 28 cm x 6.35 nnn. 
5OoC, 0.28 m l / m i n ,  75 p s i .  

Elution: 20 mM (NH,JPCOg, pH 9.5, 
[R. P .  Singhal, unpublished work.] 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

E * 0.2: 
In 
N 

w u z 

- 
a m a 

m a 

0 
m 

0 

NUCLEOTIDES 

1'5 i0 
ELUTION VOLUME (ml) 

FIGURE 23 

Group separation o f  ribonucleotides , ribonucleosides and purine 
and pyrimidine bases by anion-exclusion chromatography' i n  t he  
presence of borate ions. Column: Bio-Gel P-2, 200-400 mesh, 70 cm 
x 6.2 mm, (Void volume, 5.8 ml). Elution: 20 mM potassium tetra- 
borate (+HCOOH), pH 8.9, 0.35 ml/min, 140 ps i .  [Reproduced from 
J. X. Khym, Anal. Biochem. 58, 638 (1974), by permission of t he  
author and the  Academic Press, Inc.] 

A borate s a l t  complexes with c i s  glycols a t  a lka l ine  pH's. The 
Thus, i n  the  presence complex introduces an anionic charge 1829J70. 

of borate a t  a lkal ine pH's, a l l  of four groups of ribonucleosides 
and 5' -ribonucleotides become anions. Since guanine and ur idine 
bases have pKa values i n  the region of pH 9, guanosine and uridine 
compounds become anionic i n  contrast  t o  cytidine and adenosine com- 
pounds under these conditions. 
and nonionic propert ies ,  observed i n  t h e  presence of  borate,  can 
be exploited advantageously f o r  t h e i r  chromatographic separations.  

These differences i n  anionic charges 
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SINGHAL 

Thus, borate complexing has been used i n  other s p e c i f i c  separations,  
such as sugars2g, sugar 

n ~ c l e o s i d e s ~ ~ - ~ ~ ,  5'-ribonucleotides from 2'  , 3 ' - r i b o n ~ c l e o t i d e s ~ * ~  
and f r ee  t R N A ' s  from aminoaylated ~ R N A ' S ~ ~ , ~ ~ ,  which lack cis 

ribonucleosides from deoxy- 

glycols. 
The ribose moiety of ribonucleosides and 5' -ribonucleotides 

can be oxidized by periodate t o  cleave the 2 ' ,  3'-bond. 

duct,  a r ibose containing aldehyde groups a t  both 2 ' -  and 3'-posi-  
t ions,  chromatographs l i ke  t h e  or iginal  compound i n  the absence of 
borate. The dialdehyde can be reduced by NaHB4 t o  a dialcohol de- 
r iva t ive ,  which possesses a reduced anionic character.  Or, i t  can 
be reacted with primary amines t o  obtain products of a Schiff-base 
nature. 
t he  or iginal  aldehyde s i t e s .  
bose moiety introduces changes i n  the  anionic and perhaps also in  
the nonionic characters of the e n t i r e  molecule. 
basis  of these modifications have been achieved by column chroma- 
t ~ g r a p h y ' ~ .  By using NaB H4 for the reduction of dialdehydes, ri- 
bose derivatives can be labeled i n  v i t ro .  The method has been ex- 
p lo i t ed  for a sens i t i ve  quant i ta t ion and separation of RNA hydroly- 
sates  by p a r t i t i o n  chromatography , 

The pro- 

These products may be reduced t o  y i e l d  amino groups a t  
The chemical modification of the ri- 

Separations on t h e  

3 

13,14 

5. Nucleotides. 

A. Simple nucleotides. 
The simple nucleotides are the purine and pyrimidine 

nucleosides t h a t  are  e s t e r i f i e d  t o  a phosphoric acid residue [see 
sect ion IV(1) f o r  ionization propert ies] ,  Thus 2'-, 3'-  and 5'- 
nucleotides of both r ibose and deoxyribose s e r i e s ,  2 '  :3 '-cyclic 
and 3 ' :5 ' -cycl ic  nucleotides are known. 
t e r i za t ion  of these compounds is  credi ted t o  the pioneer work of 
Cohn77D78 and others 

The discovery and charac- 

79-81 

( i )  Cation-exchange resin.  The anionic character of 
nucleotides a t  an acid pH i s  due t o  differences i n  the cat ionic  
charge of the bases and the  anionic charge o f  the phosphate group 
linked t o  the  ribose moiety; therefore,  differences i n  the  net 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

negative charges of nucleotides can be expected (see r e f s .  10 and 

18 f o r  n e t  charges a t  a given pH). 

nucleotides , i n  conjunction with t h e i r  var iable  p a r t i t i o n s  between 

mobile (aqueous eluant) and s t a t iona ry  (organic r e s in  matrix) 

phases , are  ascribed f o r  chromatographic differences.  The nucleo- 

t i d e  separation on a cation exchanger t h a t  w a s  o r ig ina l ly  ascribed 

t o  cation-exchange82, are i n  f ac t  due t o  anion exclusion . 
exclusion of nucleotides (Fig. 24 ,  a l s o  see Fig. 2) i s  superior  t o  

anion-exchange chromatography i n  several  aspects (smaller p l a t e  

The charge differences among 

3 Anion 

ELUTION TIME ( m i d  
5 15 25 35 45 55 65 

4 I I I I I 

ELUTION VOLUME (ml) 

FIGURE 24 

Separation of a mixture of S'-ribonucleotides and th ree  com- 
mon ur idines  by anion-exclusion chromatography3. 
t he  isomeric 2 ' -  and 3'-nucleotides are  indicated by dashed l i nes  
at the top. Column: Aminex A-6, 50 cm x 5 mm. Elution: 10 mM 
HCOONHL,, pH 3.50, 5OoC, 0.2 m l / m i n .  
Eur. J. Biochem. 2, 245 (1974), by permission of t h e  Fed. Eur. 
Biochem. S O C . ]  

The posi t ions of 

[Reproduced from R. P .  Singhal, 

3 79 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



S INGHAL 

heights ,  b e t t e r  reso lu t ions ,  s a l t - f r e e  e luants ,  speed). The two 
methods were compared r ecen t ly  . The nucleosides (such as derived 
from t h e  3’ end of tRNAs) can be resolved by cation exchange 

a f t e r  analysing the sample f o r  mononucleotides by anion-exclusion 
chromatography . 

3 
30 

3 

( i i )  Anion-exchange mater ia l s ,  The f i r s t  successful 
separations of nucleotides were obtained by anion-exchange chroma- 

77 tography . 
tion79’80s83’84 and has been modified8’ t o  accommodate separations 
of bases and nucleosides i n  the  same ana lys i s .  Thus, the  anion-ex- 
change chromatography on small and uniform beads w a s  r ecent ly  re in-  

ves t iga ted  t o  develop systems t h a t  can be used t o  separa te  the  
major nucleotides i n  s ing le  e luants  (Fig. 25) and t o  separa te  most 
nucleosides,  nucleotides and o ther  hydrolysis products i n  one 
analysis (see Fig. 7 i n  r e f .  3).  

Since then, the  method has been i n  wide applica- 

3 

The separations i n  so-called reversed-phase chromatography, as 
mentioned e a r l i e r  (section I ) ,  a re  a l so  due t o  nonionic in t e rac t ions  

and t o  t h e  anion-exchange proper t ies  of the  immobilized quaternary 
ammonium derivatives18. The separa t ion  of major nucleotides (Fig. 

26) and severa l  minor components on “reversed-phase“ columns has 
been 
column (see Fig. 3 in  r e f .  18; Figs. 9 and 10 i n  ref. 86) and com- 

p lex  mixtures a re  resolved by e l u t i n g  with a l i n e a r  salt gradient 
These separations requi re  the  use of d i l u t e  salt  so lu t ions  as elu- 

an ts .  
t he  adsorbed quaternary ammonium der iva t ive  (anion-exchanger) is  
mobilized from the  i n e r t  matrix. 
can be overcome by subs t i t u t ing  sodium chloride f o r  ammonium 
acetate18. 
f o r  polychlorotrifluoroethylene, t he  i n e r t  support f o r  RPC-5. 

These workers repor t  i n s ign i f i can t  bleeding of t he  alkyl ammonium 
s a l t  while e l u t i n g  with d i l u t e  ammonium ace ta t e  so lu t ions ,  and ob- 
serve s a t i s f a c t o r y  reso lu t ions  of severa l  simple nucleotides and 
o 1 i gonuc l e  o t  i de s . 

A rap id  ana lys i s  i s  achieved by using a sho r t e r  

18 
, 

If ammonium ace ta t e  i s  employed at a low i o n i c  s t r eng th ,  

However, t h i s  p r a c t i c a l  problem 

Recently, Holton -- e t  a l .  87 subs t i t u t ed  s i l y l a t e d  s i l i c a  
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

ELUTION TIME (mid 
40 Bc 

I I 

GMP 

I I 
7,6 15,; 

ELUTION VOLUME (ml) 

FIGURE 25 

Anion-exchange chromatography3 of t he  common 5 ' -ribonucleo- 
t i d e s ,  Column: Dowex 1-X8, 400 mesh, 25 cm x 2 mm. Elution: 0.25 
M NH40Ac containing 20% 2-propanol, pH 3.3,  5OoC,  0.2 ml/min. 
[R. P. Singhal,  unpublished work.] 

B. Nucleoside Polyphosphates. 

Af te r  t he  in t roduct ion  of ion-exchange chromatography f o r  

t he  separa t ion  of nuc le i c  ac id  numerous i n v e s t i -  
ga tors  have s ince  var ious ly  m ~ d i f i e d ~ ~ , ~ ~ , ~ ~  t h e  b a s i c  method t o  

develop a p r a c t i c a l  procedure f o r  mapping t h e  substances of i n t e r e s t  

present i n  b io log ica l  f l u i d s  (such as ,  c i t r i c  ac id  cycle i n t e r -  

mediatesg9, b iosynthes is  of nuc le i c  acidg0 and acid-soluble pool 

 component^'^'^^). 
nuc leo t ides  and pyrophosphorylated forms of common nucleosides 

[such as, adenine, adenosine, adenosine 3'-phosphate, 5 -monophos- 

phate (AMP), 5'-diphosphate (ADP) and 5 ' - t r iphosphate  (ATP),  and 

These substances a re  bases,  nucleosides,  simple 
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12 

0.9 

0.6 

0.5 

m a 

a 
0 
$0.2 

I I 
oh0 30 4 

ELUTION VOLUME (ml )  

FIGURE 26 

Anion-exchange ("reversed-phase") chromatography of ribonu- 
c leot idesl*.  Column: RPC-5, 100 cm x 6.35 mm. Elution: 0.15 M 
NH40Ac - 0.28 M AcOH, pH 4.4,  50°CJ 0.5 ml/min, 160 p s i .  The 
posi t ions of  isomeric 2 ' -  and 3'-nucleotides are  indicated by 
v e r t i c a l  l ines  at the top. [Reproduced from R. P.  Singhal, Bio- 
chim. Biophys. Acta 319, 11 (1973), by permission of the Elsevier  
Publishing Co. ] 

adenosine 3 ' : 5 ' - cyc l i c  phosphate]. Ea r l i e r  separations of  these 

compounds were achieved on two anion-exchange columns under very 
acidic  conditions, where the substances are  unstable.  Figure 27 
i l l u s t r a t e s  a mapping of the acid soluble components of ra t  l i v e r  
cytoplasm. 
in  the di-  and triphosphates on t h i s  "reversed-phase" column. 

93*94, o r  other  proved by using a l inearg2,  discontinuous 

o r  other  kinds 98-101 of e luants ;  a cel lulose anion-exchanger 

The order of e lu t ion  of the monophosphates i s  repeated 

The separation of a complex mixture o f  nucleotides can be i m -  
95,96 4 

mode of sa l t  gradient;  a constant4J80 o r  fa l l ing31 pH; v o l a t i l e  72-97 
102-105 

J 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

Anion- exchange (“reversed-phase”) chromatography of u l t  rav io-  
let-absorbing components of t h e  “acid-soluble“ f r ac t ion  of rat  
l iver1*. Column: WC-5, 98 cm x 6 . 3  mm. Elution: l i n e a r  gradi-  
ent from 0.15 M t o  0.93 M NHhOAc, pH 4.4; 100 m l  of each component; 
5OoC, 0.5 ml/min, 160 p s i .  
26.1 

[Reproduced from same paper a s  Figure 

or  by using a hydroxylapati te ion-exchange mater ia l lo6 .  
the  separa t ion  of  r ibonucleoside 5 ‘-mono, -d i  , and - t r iphosphates  

on an anion-exchange column of small and uniform beads was repor- 

ted  (Fig. 2 8 ) .  These separa t ions  a re  achieved with a d i l u t e  

so lu t ion  o f  sodium c i t r a t e  a t  an a lka l ine  pH. 

s i d e s  t h a t  may i n t e r f e r e  in  these  separa t ions  can be removed by a 

p r i o r  chromatography (see Fig. 2 3 ) .  

Recently, 

10 7 

The bases  and nucleo- 

C. Oligonucleotides.  

The oligonucleotides a r e  fragments o f  nuc le ic  ac ids ,  

where nucleosides a re  l inked  toge the r  by phosphodiester bonds. (5 l -  

carbon of r ibose  i s  l inked through a phosphoric group t o  3I-carbon 

of  another r ibose) .  The hydrolysis of RNAs and DNAs with s p e c i f i c  

enzymes y i e l d  fragments of varying s i zes .  Basically t h r e e  kinds of 

ion-exchange mater ia l s  have been employed f o r  t he  separa t ion  of 

oligonucleotides.  They a r e  , anion-exchange r e s i n l o g  (Dowex-1 X2) , 
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0.50 

I 

E * In 
c! 
8 0.25 
a m 

m a 

z 
(L s: 

a 

AMP 

UMP 

GC 

ATP 

0 20 40 60 80 
TIME (mid 

FIGURE 28 

Anion-exchange separa t ion  of 5 '  -mono-, d i - ,  and t r iphosphates ,  
Column: Aminex A-27, 10 cm x 6.2 mm. Elution: concave gradient,  a 
closed constant volume mixing vesse l  containing 25 mM sodium 
c i t r a t e  and an open r e se rvo i r  containing 0 . 5  M c i t r a t e ,  both a t  pH 
8.3;  70°C, 0.6 ml/min, 40 p s i .  
Chromatogr. (1974) i n  press ,  by permission of t he  author and t h e  
Elsevier  Publishing Co.] 

[Reproduced from J. X .  Khym, J. 

modified ce llulose109 (DEAE- ce l lu lose ,  
c a l l  ed 18,86,110 reve rs e - ph as ell 

DEAE-Sephadex), and the  so- 

Figure 29 i l l u s t r a t e s  a separa t ion  of t h e  oligonucleotides,  
derived from a pancrea t ic  RNase d iges t  of glutamate t R N A ,  on a 

reversed-phase-5 column with a l i n e a r  gradient of ammonium ace ta t e  
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

FIGURE 29 

Anion-exchange (+-eversed-phaseIl) chromatography1 * of a pan- 
c r e a t i c  ribonuclease digest  of glutamate tRNA. Column: RPC-5, 
100 an x 6.35 mm. 
t i o n  (0 .4  M) followed by a l i n e a r  acetate  gradient,  0 .4  t o  4.0 M 
NH4OAc (+NHbOH), pH 9 . 8  (250 m l  each), 5OoC, 0.5 ml/min, 180 ps i .  
[Reproduced from same paper as Figure 26.1 

Elution: first with 20 m l  of the s t a r t i n g  solu- 

a t  pH 9.8. The method provides homogenous peaks of most components, 
from pyrimidine mononucleotides t o  the long-chained oligonucleotides 

t h a t  are d i f f i c u l t  t o  resolve on DW-ce l lu lose  o r  DEM-Sephadex 

pH are  superior due t o  enhanced charge differences” (see below). 

This separation method” was recently applied f o r  determining the 
b i s u l f i t e  modification s i t e s  i n  glutamate tRNA. 

grams, RNase T digests  from control and modified tRNA’s  (Fig. 30), 

are similar except f o r  t h e  presence of three e x t r a  peaks i n  t h a t  of 
22 2 

t he  modified tRNA . [tRNA fragments, (1) C-C-AoH and (2 )  C3-U- S- 

U-C-m A-C-Gp (Fig. 30a) are transformed i n t o  (1) C-U-A and (2) 

C2-U2-2S-U -m A-C-Gp and C -U 2S-U -m A-U-Gp (peaks 1-3, respec- 

t i v e l y  i n  Fig. 30b) by t h i s  modification]. 

(cf. F i g .  2 i n  r e f .  6 8 ) .  The resolut ions a t  an alkal ine 

The two chromato- 

1 

2 
OH’ 2 2 

2 2 2- 2 
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ELUTION VOLUME, ml 
0 42 84 126 168 210 

ELUTION VOLUME, rnl 

FIGURE 30 

Comparison of oligonucleotides from ribonuclease TI  d iges t s  of 
(a) nonnal and (b) b i s u l f i t e - t r e a t e d  glutamate tRNA,. 
RPC-5, 25 cm x 6 . 3  mm. Elution: l i n e a r  grad ien t  o f  0 .1  t o  0.75 M 
NaC1, pH 9 .8  (20 mM Na2C03-NaHC03IJ 100 m l  each, a t  5OoC, 0.5 
ml/min, 100 p s i .  
RNase TI .  
1974 i ssue ,  by permission o f  t h e  American Chemical Society.]  

Column: 

Sample: 4 AZ60 u n i t s  of t R N A  hydrolysed with 
[Reproduced from R. P. Singhal,  Biochemistry 13, Ju ly  2 ,  

Figure 31 i l l u s t r a t e s  a separa t ion  of pyrimidine oligonucleo- 

t i d e s  o f  DNA, obtained by ac id  hydrolysis.  

were achieved on Dowex l - C l -  columns with a l i n e a r  gradient of  hy- 

drochlor ic  ac id log ,  the  method has been modified by o ther  workers 

( fo r  example, s e e  r e f .  112) .  

c e l lu lose  f o r  the  separa t ion  of oligonucleotides a re  shown i n  Figs. 

32 and 33 below. 

These f i rs t  separa t ions  

The examples of t h e  use of t h e  DEAE- 

The appearance of the  sequence of oligonucleotides i n  the  

th ree  kinds of anion exchangers depends upon the  n e t  an ionic  

charges. A t  an ac id  pH, cytosine,  adenine and guanine (pK1,'s: 4 . 5 ,  
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0.4- 

If 0.2: 

E 
rI 
3 0.6 
.I 

4 .1  and 3.2, respectively) a re  cationized; hence, the ne t  anionic 
charge of the oligonucleotide,  containing these residues,  i s  r e -  

duced. On the  other hand, a t  an alkal ine pH, thymine, guanine, 
u rac i l  and t h e  secondary phosphate of t he  terminal residue (pK I s :  a 
9.9, 9.6, 9.5 and 6,  respectively) a re  anionized, thus enhancing 
the  net  anionic charge and exchange capacity of t h e  oligonucleotide,  
(pH 9.8 permits a separation of ur idine  isomer^'"^.) 
these ion ic  e f f e c t s ,  nonionic differences are  equally important i n  

predict ing the  e lu t ion  sequence of oligonucleotides.  
t ides  containing purine bases are  retained by the ion exchanger 
more than those containing pyrimidine bases).  

teract ions are  often problematic (low recovery, poor resolut ions) .  
They can be suppressed by operating at an elevated tempera- 
t u re  113s114 [see sect ion IV(3)], and by adding an organic solvent 
o r  7 M urea t o  the  eluant .  

urea 115-118 on the  separation of oligonucleotides of DNA by DEAE- 

cellulose chro~natography''~. Figure 33 shows a separation of t he  

Besides 

(Oligonucleo- 

These nonionic in -  

Figure 32 i l l u s t r a t e s  the e f f e c t  of 

A 

--. 
C-' 

0- 

B 
- u. 

0 
h 

FIGURE 32 

Effect of urea on the anion-exchange chromatography of deoxy- 
oligonucleotides. Sample: DNase digest  of salmon t e s t e s  DNA. 
Column: DEAE-cellulose, 20 cm x 1 cm. Elution: l i n e a r  gradient of  
NaOAc (pH 7.5) as shown, t o t a l  volume 1.5 1. 
(B] Same, with 7 M urea. [Reproduced from R. V. Tomlinson and G. 

M. Tener, J. h e r .  Chem. SOC. 84, 2644 (1962), by permission of t he  
authors and the  American Chemical Society.] 

(A) Without urea. 
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s 
w c 

0.6 
W 

0.4 2 
s 

0 
0 20 40 60 

TUBE NO, 

FIGURE 33 

Separation of t he  products of a sequent ia l ly  degraded oc ta-  
nucleotide.  Sample : t he  octanucleotide was f i r s t  dephosphooxy- 
l a t ed  (peak 7), then p a r t i a l l y  degraded by an exonuclease. 
DEAE-cellulose, 30 cm x 3.5 mm. Elution: l i n e a r  gradient of 
ace ta te ,  as shown, containing 7 M urea; 1 . 2  m l  per tube.  [Repro- 
duced from Holley e t  a l . ,  Biochem. Bio hys. Res. Commun. =, 389 
(1964), by permission of t he  au thors l lg  and the  Academic Press,  
Inc.] 

Column: 

products of  a sequent ia l ly  degraded octanucleotide of t R N A .  These 

s a t i s f a c t o r y  ~ e p a r a t i o n s ” ~  were achieved on a DEAE-cellulose col-  

umn with a l i n e a r  grad ien t  of sodium ace ta t e  containing 7 M urea.  

A low recovery of some guanylate-rich oligonucleotides from DEAE- 
18,119A Sephadex and ”reversed-phase-5” columns have been reported 

The guanylate oligomers (6 or more residues) aggregate on DEAE- 

Sephadex columns and remain s t rongly  bound t o  the  ion exchanger 

even i n  t h e  presence of high concentration of sodium chlor ide  and 
urea. Elution with guanidinium ace ta t e ,  as they suggestllgA, can 
improve the guanyl a te -  ri ch oligonucleotides ; however , t h e  e luant  s 

then m u s t  be desa l ted  f o r  f u r t h e r  manipulations. 
109,120 Desalt ing ion-exchange. The v o l a t i l i z a b l e  e luants  

a re  removed by r e p e t i t i v e  freeze-drying. 

suming and unworthy f o r  l a b i l e  compounds. 
nucleotides have been recovered from nonvola t i le  e luants  by ge l  

The process i s  time con- 
Nucleotides and oligo- 
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f i l t e r a t i o n L L  , simple adsorption chromatography on act ivated char- 
coal12', o r  by anion-exchange chromatography on small DEAE-cellu- 
lose columns122. 

d i lu t e  ammonium hydroxide o r  ammonium bicarbonate solut ion f o r  t h e  
123 recovery of adsorbed o r  exchanged substances. Loesche e t  a l .  

suggested a new approach, a s a l t  of a v o l a t i l e  acid f o r  the elu-  

t i on .  
exchanges the s a l t  cations f o r  protons. 
the reaction can be expressed: 

The last two methods f i n a l l y  require e i t h e r  a 

The s a l t  is removed by a cation exchanger (H+ form), which 
I f  NaHC03 is an eluant ,  

NaHC03 + cation exchanger (H+) -+ cation exchanger (Na+) 

+ C02 + H20 
However, the method may be unsuitable f o r  ac id - l ab i l e  compounds 
as free acid i s  evolved and the  cation exchanger i n  H+ form i s  very 
acidic.  

6. Nucleic Acids. -- 
A t  t he  present s t a t e  of a r t ,  DNAs and WAS are  generally 

separated during i so l a t ion ,  such as f ract ionat ion by phenol or en- 
zymatic destruction of one of the two nucleic acids.  RNAs t h a t  

are functionally d i f f e r e n t ,  i n  general, a l s o  vary i n  s i z e .  The 
property i s  often used f o r  t h e i r  f ract ionat ion by g e l - f i l t r a t i o n  

chromatography. Figure 34 i l l u s t r a t e s  a f ract ionat ion of DNase- 
t r ea t ed  nucleic  acids on a Sephadex 
vides groups of rWA, precursor molecules of tWAs (a and B spe- 
c i e ~ ~ ~ )  a 5s RNA and t R N A s .  

This procedure pro- 

The fract ionat ion of one group of nucleic  acid has been achi- 

eved on a large var ie ty  of adsorbants and ion-exchange materials,  
f o r  example: Keiselgurh coated with methylated albumin 1 

p ~ l y l y s i n e ' ~ ~ ,  s i l i c a  gel132A, modified cel lulose (DEAE-cellulose, 

124-131 

phosphocellulose) and agarose (DEAE-Sephadex, Sepharose) 133- 137 
1 

"reversed-phase" rnatricesl6' 17J45 86 138J 138A(see sect ion I) , hY- 
d r ~ x y a p a t i t e ' ~ ' - ~ ~ ~ ,  modified polystyrene 145-147a and borate sub- 
s t i t u t e d  cellulose74 or p o l y m e t h a ~ h r y l a t e ~ ~ .  
column and an anion-exchange column of small and uniform-size beads 

The reversed-phase-5 
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CHROMATOGRAPHIC ASSAY OF NUCLEIC ACIDS 

FIGURE 34 

Separation of 32P-RNAs (E. - -  co l i )  by ge l  f i l t e r a t i o n .  Column: 
Sephadex G-100, 90 cm x 1 . 6  cm; bed vo l . ,  180 m l .  E lu t ion :  0.75 
M NaCl with 10 mM NaOAc, pH 5.1, 4OC, 9 ml/h. (a) Pulse-labeled 
RNA, c e l l s  t r e a t e d  with chloramphinicol (CAP) i n  a low-phosphate 
medium. (b) Stab le  RNA. [Reproduced from J. D i j k  and R.  P.  Sing- 
h a l ,  J .  Biol. Chem. - 249, 645 (1974), by permission of t h e  Am. SOC. 
Biol.  Chem.] 

were r ecen t ly  compared f o r  t h e  f r ac t iona t ion  of bulk tRNAs under 

s imi l a r  conditions.  

ethanol addition t o  the  e luant  were not iced  on t h e  anion-exchange 

c o l m 3  (Singhal and coworkers, unpublished r e s u l t s ) .  

Improved r e so lu t ions  and a p o s s i b i l i t y  of 
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The polynucleotides are  highly anionic i n  nature .  Therefore, 

no fract ionat ion by anion exclusion can be expected on a column 
of molecular-sieve material  t h a t  i s  anionical ly  charged. 
bulk tRNAs can be separated i n t o  two groups on Sephadex matrices of 
f ine bead s i z e  ( r ich i n  carboxyl residues) 148~149. They a re  appar- 

ent ly  f ract ionated due t o  anion exclusion. 
t o  examine the separation of medium s i z e  nucleic  acids (3-5 S) on 

columns of Sepharose 48, which w a s  recent ly  found sa t i s f ac to ry  f o r  
protein separation by anion exclusion 

However , 

I t  w i l l  be in t e re s t ing  

150 . 
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